Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27440
J Exp Zool 1988 Jul 01;2471:39-44. doi: 10.1002/jez.1402470106.
Show Gene links Show Anatomy links

Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus.

Sessions SK , Bryant SV .


???displayArticle.abstract???
Xenopus laevis exhibits an ontogenetic decline in the ability to regenerate its limbs: Young tadpoles can completely regenerate an amputated limb, whereas post metamorphic froglets regenerate at most a cartilagenous "spike." We have tested the regenerative competence of normally regenerating limb buds of stage 52-53 Xenopus tadpoles grafted onto limb stumps of postmetamorphic froglets. The limb buds become vascularized and innervated by the host and, when amputated, regenerate limbs with normal or slightly less than normal numbers of tadpole hindlimb digits. Reciprocal grafts of froglet forelimb blastemas onto tadpole hindlimb stumps resulted in either autonomous development of tadpole hindlimb structures and/or formation of a cartilaginous spike typical of froglet forelimb regeneration. Our results suggest that the Xenopus froglet host environment is completely permissive for regeneration and that the ability to regenerate a complete limb pattern is an intrinsic property of young tadpole limb cells, a property that is lost during ontogenesis.

???displayArticle.pubmedLink??? 3183582
???displayArticle.link??? J Exp Zool
???displayArticle.grants??? [+]