Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Development July 1, 1987; 100 (3): 543-57.
Show Gene links Show Anatomy links

Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos.

Klymkowsky MW , Maynell LA , Polson AG .

We have used whole-mount immunofluorescence microscopy of late-stage Xenopus laevis oocytes and early embryos to examine the organization of their cortical cytokeratin systems. In both mature oocytes and early embryos, there is a distinct animal-vegetal polarity in cytokeratin organization. In mature (stage-VI) oocytes, the cytokeratin filaments of the vegetal region form a unique, almost geodesic network; in the animal region, cytokeratin organization appears much more variable and irregular. In unfertilized, postgerminal vesicle breakdown eggs, the cortical cytokeratin system is disorganized throughout both animal and vegetal hemispheres. After fertilization, cytokeratin organization reappears first in a punctate pattern that is transformed into an array of oriented filaments. These cytokeratin filaments appear first in the vegetal hemisphere and are initially thin. Subsequently, they form bundles that grow thicker through the period of first to second cleavage, at which point large cytokeratin filament bundles form a loose, fishnet-like system that encompasses the vegetal portion of each blastomere. In the animal region, cytokeratin filaments do not appear to form large fibre networks, but rather appear to be organized into a system of fine filaments. The animal-vegetal polarity in cytokeratin organization persists until early blastula (stage 5); in later-stage embryos, both animal and vegetal blastomeres possess qualitatively similar cytokeratin filament systems. The entire process of cytokeratin reorganization in the egg is initiated by prick activation. These observations indicate that the cortical cytoskeleton of Xenopus oocytes and early embryos is both dynamic and asymmetric.

PubMed ID: 2443336
Article link:

Species referenced: Xenopus laevis
Genes referenced: krt12.4 krt61 slc4a1 vim
Antibodies: Krt5.2 Ab1 Vim Ab1

Article Images: [+] show captions