Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3368
J Physiol 2004 Aug 15;559Pt 1:157-67. doi: 10.1113/jphysiol.2004.065094.
Show Gene links Show Anatomy links

Zinc is both an intracellular and extracellular regulator of KATP channel function.

Prost AL , Bloc A , Hussy N , Derand R , Vivaudou M .


???displayArticle.abstract???
Extracellular Zn(2+) has been identified as an activator of pancreatic K(ATP) channels. We further examined the action of Zn(2+) on recombinant K(ATP) channels formed with the inward rectifier K(+) channel subunit Kir6.2 associated with either the pancreatic/neuronal sulphonylurea receptor 1 (SUR1) subunit or the cardiac SUR2A subunit. Zn(2+), applied at either the extracellular or intracellular side of the membrane appeared as a potent, reversible activator of K(ATP) channels. External Zn(2+), at micromolar concentrations, activated SUR1/Kir6.2 but induced a small inhibition of SUR2A/Kir6.2 channels. Cytosolic Zn(2+) dose-dependently stimulated both SUR1/Kir6.2 and SUR2A/Kir6.2 channels, with half-maximal effects at 1.8 and 60 microm, respectively, but it did not affect the Kir6.2 subunit expressed alone. These observations point to an action of both external and internal Zn(2+) on the SUR subunit. Effects of internal Zn(2+) were not due to Zn(2+) leaking out, since they were unaffected by the presence of a Zn(2+) chelator on the external side. Similarly, internal chelators did not affect activation by external Zn(2+). Therefore, Zn(2+) is an endogenous K(ATP) channel opener being active on both sides of the membrane, with potentially distinct sites of action located on the SUR subunit. These findings uncover a novel regulatory pathway targeting K(ATP) channels, and suggest a new role for Zn(2+) as an intracellular signalling molecule.

???displayArticle.pubmedLink??? 15218066
???displayArticle.pmcLink??? PMC1665068
???displayArticle.link??? J Physiol


Species referenced: Xenopus laevis
Genes referenced: abcc8 abcc9

References [+] :
Ashcroft, Properties and functions of ATP-sensitive K-channels. 1990, Pubmed