Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34494
Invest Ophthalmol Vis Sci August 1, 2006; 47 (8): 3234-41.
Show Gene links Show Anatomy links

Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.

Tam BM , Moritz OL .


Abstract
PURPOSE: To investigate the pathogenic mechanisms that underlie retinal degeneration induced by the rhodopsin mutation P23H in a Xenopus laevis model of RP. METHODS: Transgenic X. laevis were generated that expressed the rhodopsin mutants rhoP23H and rhoP23H/K29R (a variant incapable of transducin activation). Using quantitative dot blot assay, transgenic rhodopsin levels and the extent of retinal degeneration were determined. The contribution of rhodopsin signal transduction to cell death was assessed by comparison of rhoP23H and rhoP23H/K296R effects and by dark rearing of rhoP23H tadpoles. Intracellular localization and the oligomeric state of rhoP23H were determined by confocal immunofluorescence microscopy and Western blot analysis. RESULTS: RhoP23H induced retinal degeneration in a dose-dependent manner whereas expression of a control rhodopsin did not, indicating that rod photoreceptor death was specific to the P23H mutation and was not caused by the overexpression of rhodopsin. Neither abolishment of rhoP23H photosensitivity and ability to activate transducin nor dark rearing rescued rod viability. RhoP23H was localized primarily to the endoplasmic reticulum (ER) of inner segments. Western blot analysis of transgenic retinas showed that rhoP23H was prone to form dimers and higher molecular weight oligomers. However, aggresomes were not observed in rhoP23H transgenic retinal sections, despite their being reported in cultured cells expressing rhoP23H. CONCLUSIONS: These results support a role for rhoP23H misfolding and inner segment accumulation in rod death, possibly by ER overload or other cellular stress pathways rather than by altered rhodopsin signal transduction or aggresome formation.

PubMed ID: 16877386
Article link: Invest Ophthalmol Vis Sci


Species referenced: Xenopus laevis
Genes referenced: gnat1 rho
Antibodies: Rho Ab12