Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34767
Nat Cell Biol 2006 Sep 01;89:924-32. doi: 10.1038/ncb1455.
Show Gene links Show Anatomy links

Examining how the spatial organization of chromatin signals influences metaphase spindle assembly.

Gaetz J , Gueroui Z , Libchaber A , Kapoor TM .


???displayArticle.abstract???
During cell division, the proper assembly of a microtubule-based bipolar spindle depends on signals from chromatin. However, it is unknown how the spatial organization of chromatin signals affects spindle morphology. Here, we use paramagnetic chromatin beads, and magnetic fields for their alignment in cell-free extracts, to examine the spatial components of signals that regulate spindle assembly. We find that for linear chromatin-bead arrays that vary by eightfold in length, metaphase spindle size and shape are constant. Our findings indicate that, although chromatin provides cues for microtubule formation, metaphase spindle organization, which is controlled by microtubule-based motors, is robust to changes in the shape of chromatin signals.

???displayArticle.pubmedLink??? 16892054
???displayArticle.link??? Nat Cell Biol
???displayArticle.grants??? [+]


References :
Vernos, Only one spindle, if you please.... 2006, Pubmed, Xenbase