Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Curr Top Dev Biol January 1, 2007; 78 23-46.
Show Gene links Show Anatomy links

Regulation of the epithelial Na+ channel by peptidases.

Planès C , Caughey GH .

Recent investigations point to an important role for peptidases in regulating transcellular ion transport by the epithelial Na(+) channel, ENaC. Several peptidases, including furins and proteasomal hydrolases, modulate ENaC maturation and disposal. More idiosyncratically, apical Na(+) transport by ENaC in polarized epithelia of kidney, airway, and gut is stimulated constitutively by one or more trypsin-family serine peptidases, as revealed by inhibition of amiloride-sensitive Na(+) transport by broad-spectrum antipeptidases, including aprotinin and bikunin/SPINT2. In vitro, the transporting activity of aprotinin-suppressed ENaC can be restored by exposure to trypsin. The prototypical channel-activating peptidase (CAP) is a type 1 membrane-anchored tryptic peptidase first identified in Xenopus kidney cells. Frog CAP1 strongly upregulates Na(+) transport when coexpressed with ENaC in oocytes. The amphibian enzyme''s apparent mammalian orthologue is prostasin, otherwise known as CAP1, which is coexpressed with ENaC in a variety of epithelia. In airway cells, prostasin is the major basal regulator of ENaC activity, as suggested by inhibition and knockdown experiments. Other candidate regulators of mature ENaC include CAP2/TMPRSS4 and CAP3/matriptase (also known as membrane-type serine protease 1/ST14). Mammalian CAPs are potential targets for treatment of ENaC-mediated Na(+) hyperabsorption by the airway in cystic fibrosis (CF) and by the kidney in hypertension. CAPs can be important for mammalian development, as indicated by embryonic lethality in mice with null mutations of CAP1/prostasin. Mice with selectively knocked out expression of CAP1/prostasin in the epidermis and mice with globally knocked out expression of CAP3/matriptase exhibit phenotypically similar defects in skin barrier function and neonatal death from dehydration. In rats, transgenic overexpression of human prostasin disturbs salt balance and causes hypertension. Thus, several converging lines of evidence indicate that ENaC function is regulated by peptidases, and that such regulation is critical for embryonic development and adult function of organs such as skin, kidney, and lung.

PubMed ID: 17338914
PMC ID: PMC2276519
Article link: Curr Top Dev Biol
Grant support: [+]

Species referenced: Xenopus
Genes referenced: cap1 cap2 prss1 prss8 prss8l.1 [provisional] spint2 st14 tmprss4

References [+] :
Adachi, Activation of epithelial sodium channels by prostasin in Xenopus oocytes. 2001, Pubmed, Xenbase