Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Neurosci Methods January 30, 2008; 167 (2): 140-7.

Improved fluorescent (calcium indicator) dye uptake in brain slices by blocking multidrug resistance transporters.

Manzini I , Schweer TS , Schild D .

ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that, also known as multidrug resistance proteins, transport a wide variety of substrates across biological membranes in an energy-dependent manner. Recently it has been shown that members of this protein family interfere with fluorescent (calcium indicator) dye uptake in taste buds of rat and in cells in the olfactory epithelium of larval Xenopus laevis, including olfactory receptor neurons. It has, however, not been resolved whether this effect only serves to extrude xenobiotics in sensory taste and olfactory cells, or alternatively, whether it is a more general feature of many central nervous system neurons. In the latter case blocking these transporters would improve fluorescent dye uptake in general. Here we show, by means of cell imaging, that also neurons of the olfactory bulb express multidrug resistance transporters, whereby a marked inhomogeneity among cells in the main and accessory olfactory bulb was observed. Blocking these transporters improved the net uptake of fluorescent dyes not only in cell somata of the olfactory bulb, but especially in fine neuronal structures such as individual dendrites or olfactory glomeruli, which consist of a tangle of tiny neuronal processes. We therefore suggest that the expression of multidrug resistance proteins may be common in cells of the central nervous system, and that the application of specific transport inhibitors could generally improve fluorescent dye uptake in brain slices, thereby improving calcium imaging conditions.

PubMed ID: 17767961
Article link: J Neurosci Methods