Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Genetics January 1, 2009; 181 (1): 139-52.
Show Gene links Show Anatomy links

Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function.

Fan JY , Preuss F , Muskus MJ , Bjes ES , Price JL .

Mutations lowering the kinase activity of Drosophila Doubletime (DBT) and vertebrate casein kinase Iepsilon/delta (CKIepsilon/delta) produce long-period, short-period, and arrhythmic circadian rhythms. Since most ckI short-period mutants have been isolated in mammals, while the long-period mutants have been found mostly in Drosophila, lowered kinase activity may have opposite consequences in flies and vertebrates, because of differences between the kinases or their circadian mechanisms. However, the results of this article establish that the Drosophila dbt mutations have similar effects on period (PER) protein phosphorylation by the fly and vertebrate enzymes in vitro and that Drosophila DBT has an inhibitory C-terminal domain and exhibits autophosphorylation, as does vertebrate CKIepsilon/delta. Moreover, expression of either Drosophila DBT or the vertebrate CKIdelta kinase carrying the Drosophila dbt(S) or vertebrate tau mutations in all circadian cells leads to short-period circadian rhythms. By contrast, vertebrate CKIdelta carrying the dbt(L) mutation does not lengthen circadian rhythms, while Drosophila DBT(L) does. Different effects of the dbt(S) and tau mutations on the oscillations of PER phosphorylation suggest that the mutations shorten the circadian period differently. The results demonstrate a high degree of evolutionary conservation of fly and vertebrate CKIdelta and of the functions affected by their period-shortening mutations.

PubMed ID: 18957703
PMC ID: PMC2621163
Article link: Genetics
Grant support: [+]

Species referenced: Xenopus
Genes referenced: csnk1g2 dbt mapt tptep2-csnk1e

References [+] :
Bao, The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. 2001, Pubmed