Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-42169
Cell Cycle 2010 Oct 01;919:3913-20. doi: 10.4161/cc.9.19.13138.
Show Gene links Show Anatomy links

Regulation of the ATM-activator protein Aven by CRM1-dependent nuclear export.

Esmaili AM , Johnson EL , Thaivalappil SS , Kuhn HM , Kornbluth S , Irusta PM .


???displayArticle.abstract???
Aven is a regulator of apoptosis whose overexpression is associated with poor prognosis in several cancers, including childhood acute lymphoblastic leukemia and acute myeloid leukemia. We have recently shown that Aven serves as an activator and substrate of ATM, thereby modulating the DNA-damage response and G(2)/M cell cycle progression. Under physiological conditions, the cellular localization of Aven is mainly cytosolic, but a small fraction of the protein is present in the nucleus. Here, we show that treatment of cells with leptomycin B, an inhibitor of Exportin-1/CRM (chromosomal region maintenance) 1, resulted in nuclear accumulation of Aven. Furthermore, we identified a functional LR-NES between amino acid residues 282-292 of the human Aven protein, a sequence that is evolutionary conserved among a range of vertebrate species. Disruption of this LR-NES by site-directed mutagenesis resulted in enhanced nuclear localization of Aven, but did not alter the ability of the protein to induce G(2)/M cell cycle arrest in interphase Xenopus laevis extracts. However, elimination of the LR-NES sequence led to a reduction in the capacity of Aven to arrest Xenopus oocytes containing intact nuclei. Our results suggest that the regulation of nucleocytoplasmatic traffic of Aven could modulate its ability to influence cell cycle progression.

???displayArticle.pubmedLink??? 20935510
???displayArticle.link??? Cell Cycle


Species referenced: Xenopus laevis
Genes referenced: atm aven xpo1

References :
Gross, Aven-uing between nuclear export and cell cycle arrest. 2010, Pubmed