Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-42617
Biochim Biophys Acta 2011 Jun 01;18136:1129-36. doi: 10.1016/j.bbamcr.2011.01.002.
Show Gene links Show Anatomy links

Biphasic chromatin binding of histone chaperone FACT during eukaryotic chromatin DNA replication.

Kundu LR , Seki M , Watanabe N , Murofushi H , Furukohri A , Waga S , Score AJ , Blow JJ , Horikoshi M , Enomoto T , Tada S .


???displayArticle.abstract???
The facilitates chromatin transcription (FACT) complex affects nuclear DNA transactions in a chromatin context. Though the involvement of FACT in eukaryotic DNA replication has been revealed, a clear understanding of its biochemical behavior during DNA replication still remains elusive. Here, we analyzed the chromatin-binding dynamics of FACT using Xenopus egg extract cell-free system. We found that FACT has at least two distinct chromatin-binding phases: (1) a rapid chromatin-binding phase at the onset of DNA replication that did not involve origin licensing and (2) a second phase of chromatin binding that initiated after origin licensing. Intriguingly, early-binding FACT dissociated from chromatin when DNA replication was blocked by the addition of Cdc6 in the licensed state before origin firing. Cdc6-induced removal of FACT was blocked by the inhibition of origin licensing with geminin, but not by suppressing the activity of DNA polymerases, CDK, or Cdc7. Furthermore, chromatin transfer experiments revealed that impairing the later binding of FACT severely compromises DNA replication activity. Taken together, we propose that even though FACT has rapid chromatin-binding activity, the binding pattern of FACT on chromatin changes after origin licensing, which may contribute to the establishment of its functional link to the DNA replication machinery.

???displayArticle.pubmedLink??? 21232560
???displayArticle.pmcLink??? PMC3428913
???displayArticle.link??? Biochim Biophys Acta
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: cdc6 cdc7 gmnn

References [+] :
Alexiadis, Influence of core histone acetylation on SV40 minichromosome replication in vitro. 1997, Pubmed