Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43695
Biochem J 2011 Jun 15;4363:609-20. doi: 10.1042/BJ20110056.
Show Gene links Show Anatomy links

Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2.

Pandey BK , Srivastava S , Singh M , Ghosh JK .


???displayArticle.abstract???
Cytotoxicity, a major obstacle in therapeutic application of antimicrobial peptides, is controlled by leucine-zipper-like sequences in melittin and other naturally occurring antimicrobial peptides. Magainin 2 shows significantly lower cytotoxicity than many naturally occurring antimicrobial peptides and lacks this structural element. To investigate the consequences of introducing a leucine zipper sequence in magainin 2, a novel analogue (Mag-mut) was designed by rearranging only the positions of its hydrophobic amino acids to include this structural element. Both magainin 2 and Mag-mut showed appreciable similarities in their secondary structures in the presence of negatively charged lipid vesicles, in localizing and permeabilizing the selected bacteria and exhibiting bactericidal activities. However, Mag-mut bound and localized strongly on to the mammalian cells tested and exhibited significantly higher cytotoxicity than magainin 2. Only Mag-mut, but not magainin 2, permeabilized human red blood cells and zwitterionic lipid vesicles. In contrast with magainin 2, Mag-mut self-assembled in an aqueous environment and bound co-operatively on to zwitterionic lipid vesicles. The peptides formed pores of different sizes on to a selected mammalian cell. The results of the present study indicate an important role of the leucine zipper sequence in the cytotoxicity of Mag-mut and demonstrate that its introduction into a non-toxic peptide, without altering the amino acid composition, can render cytotoxicity.

???displayArticle.pubmedLink??? 21434868
???displayArticle.link??? Biochem J


Species referenced: Xenopus
Genes referenced: mag magainins mmut