Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44546
J Neurosci 2011 Nov 30;3148:17449-59. doi: 10.1523/JNEUROSCI.2940-11.2011.
Show Gene links Show Anatomy links

Mechanism of accelerated current decay caused by an episodic ataxia type-1-associated mutant in a potassium channel pore.

Peters CJ , Werry D , Gill HS , Accili EA , Fedida D .


???displayArticle.abstract???
In Kv1.1, single point mutants found below the channel activation gate at residue V408 are associated with human episodic ataxia type-1, and impair channel function by accelerating decay of outward current during periods of membrane depolarization and channel opening. This decay is usually attributed to C-type inactivation, but here we provide evidence that this is not the case. Using voltage-clamp fluorimetry in Xenopus oocytes, and single-channel patch clamp in mouse ltk- cells, of the homologous Shaker channel (with the equivalent mutation V478A), we have determined that the mutation may cause current decay through a local effect at the activation gate, by destabilizing channel opening. We demonstrate that the effect of the mutant is similar to that of trapped 4-aminopyridine in antagonizing channel opening, as the mutation and 10 mm 4-AP had similar, nonadditive effects on fluorescence recorded from the voltage-sensitive S4 helix. We propose a model where the Kv1.1 activation gate fails to enter a stabilized open conformation, from which the channel would normally C-type inactivate. Instead, the lower pore lining helix is able to enter an activated-not-open conformation during depolarization. These results provide an understanding of the molecular etiology underlying episodic ataxia type-1 due to V408A, as well as biophysical insights into the links between the potassium channel activation gate, the voltage sensor and the selectivity filter.

???displayArticle.pubmedLink??? 22131406
???displayArticle.pmcLink??? PMC6623802
???displayArticle.link??? J Neurosci
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: ltk

References [+] :
Adelman, Episodic ataxia results from voltage-dependent potassium channels with altered functions. 1995, Pubmed, Xenbase