Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Nucleic Acids Res August 1, 2010; 38 (14): 4635-50.

Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos.

Chen YC , Wu BK , Chu CY , Cheng CH , Han HW , Chen GD , Lee MT , Hwang PP , Kawakami K , Chang CC , Huang CJ .

In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5''-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.

PubMed ID: 20378713
PMC ID: PMC2919723
Article link: Nucleic Acids Res

Species referenced: Xenopus
Genes referenced: actl6a fabp2 gata4 gata6 myf5 myod1 rtn4 tff3.7

Article Images: [+] show captions
References [+] :
Acevedo, A new role for Nogo as a regulator of vascular remodeling. 2004, Pubmed