Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-49994
Chem Res Toxicol 2015 Jan 20;281:103-15. doi: 10.1021/tx500380t.
Show Gene links Show Anatomy links

Sex-, Species-, and Tissue-Specific Metabolism of Empagliflozin in Male Mouse Kidney Forms an Unstable Hemiacetal Metabolite (M466/2) That Degrades to 4-Hydroxycrotonaldehyde, a Reactive and Cytotoxic Species.

Taub ME , Ludwig-Schwellinger E , Ishiguro N , Kishimoto W , Yu H , Wagner K , Tweedie D .


???displayArticle.abstract???
Following oral administration of empagliflozin (1000 mg/kg/day) to male and female CD-1 mice for 2 years, renal tubular injury was identified in male mice. Renal injury was not detected in male mice (≤300 mg/kg/day), in female mice (1000 mg/kg/day), or in male or female Han Wistar rats (700 mg/kg/day). Using transfected HEK293 cells and Xenopus oocytes, empagliflozin was found to be a substrate of various mouse and rat organic anion transporters (oat/Oat) and organic anion transporting polypeptide (oatp/Oatp) transporters: mouse oat3, rat Oat3, mouse oatp1a1, and rat Oatp1a1. However, using isolated kidney slices from male and female mice and rats, no sex-based difference in the extent of uptake of empagliflozin occurred. Metabolism studies using hepatic and renal microsomes from male and female mice, rats, and humans revealed a hemiacetal metabolite of empagliflozin (M466/2), predominantly formed in male mouse kidney microsomes. Formation of M466/2 in male mouse kidney microsomes was 31-fold higher compared to that in female mouse kidney microsomes and was ∼29- and ∼20-fold higher compared to that in male and female mouse liver microsomes, respectively. M466/2 is unstable and degrades to form a phenol metabolite (M380/1) and 4-hydroxycrotonaldehyde (4-OH CTA). Formed 4-OH CTA was trapped by reduced GSH, and the structure of the GSH adduct was confirmed by mass spectrometry. Stoichiometric formation of M380/1 from M466/2 was observed (93-96% at 24 h); however, formation of 4-OH CTA was considerably lower (∼17.5% at 40 h), which is consistent with 4-OH CTA being a highly reactive species. These data represent a highly selective tissue-, species-, and sex-specific lesion in male CD-1 mice associated with a cytotoxic metabolite product, 4-OH CTA. In humans, glucuronidation of empagliflozin is the most prevalent metabolic pathway, and oxidation is a minor pathway. Thus, renal toxicity due to the formation of 4-OH CTA from empagliflozin is not expected in humans.

???displayArticle.pubmedLink??? 25489797
???displayArticle.link??? Chem Res Toxicol


Species referenced: Xenopus laevis
Genes referenced: pcyt1a slco1a2