Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-50412
Protein Pept Lett 2014 Jan 01;223:256-63. doi: 10.2174/0929866521666141229105757.
Show Gene links Show Anatomy links

Magainin-related peptides stimulate insulin-release and improve glucose tolerance in high fat fed mice.

Ojo OO , Srinivasan DK , Owolabi BO , Flatt PR , Abdel-Wahab YH .


???displayArticle.abstract???
Earlier peptidomic analysis of the skin secretion of Xenopus amieti led to the identification of orthologs of magainins and other peptides. This study investigated the degradation, in vitro insulin-releasing and acute metabolic effects of magainin-AM1 (GIKEFAHSLGKFG KAFVGGILNQ) and magainin-AM2 (GVSKILHSAGKFGKAFLGEIMKS). Plasma degradation was investigated using reversed-phase HPLC and MALDI-TOF mass spectroscopy. Insulin-releasing effects were determined using BRIN-BD11 clonal beta cells and mouse islets. Effects of magainin peptides on cytosolic enzyme lactate dehydrogenase release, membrane potential and intracellular Ca(2+) concentration were assessed using BRIN-BD11 cells while their in vivo effects on glucose tolerance and insulin release were assessed in obese, insulin-resistant Swiss National Institute of Health (NIH) mice. Both peptides were resistant to degradation by plasma enzymes in vitro for up to 8 h. Though magainin-AM1 elicited non-toxic, concentration-dependent stimulation of insulin-release from clonal BRINBD11 cells at concentrations ≥ 100nM, magainin-AM2 produced a higher stimulation of insulin-release from BRIN-BD11 cells and isolated mouse islets. Membrane depolarization and intracellular [Ca(2+)]i in BRIN-BD11 cells were significantly (P<0.05) induced by both peptides and chelation of extracellular Ca(2+), addition of diazoxide or verapamil significantly (P<0.01) reduced the insulinotropic actions of the peptides. Administration of magainin-AM2 (75 nmol/kg body weight) to high-fat fed mice significantly enhanced insulin-release (P<0.01) and improved glucose tolerance (P<0.05). These data indicate magainin-AM2 peptides have potential for development into agents for treatment of type 2 diabetes.

???displayArticle.pubmedLink??? 25544592
???displayArticle.link??? Protein Pept Lett


Species referenced: Xenopus
Genes referenced: ins magainins