Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51047
Mech Dev November 1, 2014; 134 1-15.
Show Gene links Show Anatomy links

The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development.

Grifone R , Xie X , Bourgeois A , Saquet A , Duprez D , Shi DL .


Abstract
RNA-binding proteins (RBP) contribute to gene regulation through post-transcriptional events. Despite the important roles demonstrated for several RBP in regulating skeletal myogenesis in vitro, very few RBP coding genes have been characterized during skeletal myogenesis in vertebrate embryo. In the present study we report that Rbm24, which encodes the RNA-binding motif protein 24, is required for skeletal muscle differentiation in vivo. We show that Rbm24 transcripts are expressed at all sites of skeletal muscle formation during embryogenesis of different vertebrates, including axial, limb and head muscles. Interestingly, we find that Rbm24 protein starts to accumulate in MyoD-positive myoblasts and is transiently expressed at the onset of muscle cell differentiation. It accumulates in myotomal and limb myogenic cells, but not in Pax3-positive progenitor cells. Rbm24 expression is under the direct regulation by MyoD, as demonstrated by in vivo chromatin immunoprecipitation assay. Using morpholino knockdown approach, we further show that Rbm24 is required for somitic myogenic progenitor cells to differentiate into muscle cells during chick somitic myogenesis. Altogether, these results highlight Rbm24 as a novel key regulator of the myogenic differentiation program during vertebrate development.

PubMed ID: 25217815
Article link: Mech Dev


Species referenced: Xenopus
Genes referenced: myf5 myod1 pax3 rbm24 tcf3


Article Images: [+] show captions