Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55544
Microvasc Res 2018 Mar 01;116:26-33. doi: 10.1016/j.mvr.2017.10.001.
Show Gene links Show Anatomy links

Angiotensin II regulates δ-ENaC in human umbilical vein endothelial cells.

Downs CA , Johnson NM , Coca C , Helms MN .


???displayArticle.abstract???
The amiloride-sensitive epithelial sodium channel (ENaC) has been characterized in a variety of non-epithelial tissues. In the current study we sought to understand the effect of angiotensin II on δ ENaC function using human umbilical vein endothelial cells (HUVECs). The δ ENaC subunit is found in humans, but notably absent in rat and most mouse epithelial tissues. In this study we report the presence of δ ENaC in HUVECS with a half-life of ~80min and a change in δ ENaC abundance when HUVECs were treated with angiotensin II. We also observed that angiotensin II increased apical membrane expression of δ ENaC and decreased protein ubiquitination. Equivalent short circuit current measurements showed angiotensin II increased δ ENaC ion transport in HUVEC cells. Treatment with the antioxidant apocynin attenuated angiotensin II mediated effects indicating an important role for angiotensin-derived H2O2 in δ ENaC subunit regulation. Whole cell recordings from oocytes injected with δβγ ENaC shows H2O2-sensitive current. These results suggest that δ ENaC subunits can make up functional channel in HUVEC cells that are regulated by angiotensin II in a redox-sensitive manner. The novel findings have significant implications for our understanding of the role of ENaC in vascular conditions in which oxidative stress occurs.

???displayArticle.pubmedLink??? 29051045
???displayArticle.link??? Microvasc Res