Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55904
Dev Comp Immunol 2019 Sep 01;98:89-97. doi: 10.1016/j.dci.2019.04.011.
Show Gene links Show Anatomy links

The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities.

Yaparla A , Docter-Loeb H , Melnyk MLS , Batheja A , Grayfer L .


???displayArticle.abstract???
Pathogens such as the Frog Virus 3 (FV3) ranavirus are contributing to the worldwide amphibian declines. While amphibian macrophages (Mϕs) are central to the immune defenses against these viruses, the pathogen recognition capacities of disparate amphibian Mϕ subsets remain unexplored. In turn, Mϕ differentiation and functionality are interdependent on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by colony-stimulating factor-1 (CSF-1) and the unrelated interleukin-34 (IL-34) cytokines. Notably, the Xenopus laevis frog CSF-1- and IL-34-derived Mϕs are functionally distinct, and while the CSF-1-Mϕs are more susceptible to FV3, the IL-34-Mϕs are highly resistant to this pathogen. Here, we elucidate the pathogen recognition capacities of CSF-1- and IL-34-differentiated Mϕs by evaluating their baseline transcript levels of key pathogen pattern recognition receptors (PRRs). Compared to the frog CSF-1-Mϕs, their IL-34-Mϕs exhibited greater expression of PRR genes associated with viral recognition as well as PRR genes known for recognizing bacterial pathogen-associated molecular patterns (PAMPs). By contrast, the CSF-1-Mϕs displayed greater expression of toll-like receptors (TLRs) that are absent in humans. Moreover, although the two Mϕ types possessed similar expression of most downstream PRR signaling components, they exhibited distinct outcomes upon stimulation with hallmark PAMPs, as measured by their tumor necrosis factor-alpha and interferon-7 gene expression. Remarkably, stimulation with a TLR2/6 agonist conferred FV3 resistance to the otherwise susceptible CSF-1-Mϕs while treatment with a TLR9 agonist significantly ablated the IL-34-Mϕ resistance to FV3. These changes in Mϕ-FV3 susceptibility and resistance appeared to be linked to changes in their expression of key immune genes. Greater understanding of the amphibian macrophage pathogen-recognition capacities will lend to further insights into the pathogen-associated causes of the amphibian declines.

???displayArticle.pubmedLink??? 31029710
???displayArticle.link??? Dev Comp Immunol


Species referenced: Xenopus laevis
Genes referenced: csf1 csf1r il34 nectin1 tlr9 tnf
GO keywords: immune response