Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57607
Dev Biol January 1, 2021; 471 10-17.

A role for Cep70 in centriole amplification in multiciliated cells.

Kim SK , Brotslaw E , Thome V , Mitchell J , Ventrella R , Collins C , Mitchell B .


Abstract
Centriole amplification in multiciliated cells occurs in a pseudo-cell cycle regulated process that typically utilizes a poorly characterized molecularly dense structure called the deuterosome. We identified the centrosomal protein Cep70 as a novel deuterosome-associated protein that forms a complex with other deuterosome proteins, CCDC78 and Deup1. Cep70 dynamically associates with deuterosomes during centriole amplification in the ciliated epithelia of Xenopus embryos. Cep70 is not found in nascent deuterosomes prior to amplification. However, it becomes localized at deuterosomes at the onset of centriole biogenesis and remains there after the completion of centriole amplification. Deuterosome localization requires a conserved C-terminal "Cep70" motif. Depletion of Cep70 using morpholino oligos or CRISPR/Cas9 editing in F0 embryos leads to a severe decrease in centriole formation in both endogenous MCCs, as well as ectopically induced MCCs. Consistent with a decrease in centrioles, endogenous MCCs have defects in the process of radial intercalation. We propose that Cep70 represents a novel regulator of centriole biogenesis in MCCs.

PubMed ID: 33285087
PMC ID: PMC7856201
Article link: Dev Biol
Grant support: [+]

Genes referenced: ccdc78 cep70 deup1
GO keywords: centriole

References [+] :
Al Jord, Calibrated mitotic oscillator drives motile ciliogenesis. 2018, Pubmed