Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6195
J Physiol 2002 Nov 15;5451:5-11.
Show Gene links Show Anatomy links

Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform.

Patel SP , Campbell DL , Strauss HC .


???displayArticle.abstract???
Kv channel interacting proteins (KChIPs) are Ca(2+)-binding proteins with four EF-hands. KChIPs modulate Kv4 channel gating by slowing inactivation kinetics and accelerating recovery kinetics. Thus, KChIPs are believed to be important regulators of Kv4 channels underlying transient outward K(+) currents in many excitable cell types. We have cloned a structurally minimal KChIP2 isoform (KChIP2d) from ferret heart. KChIP2d corresponds to the final 70 C-terminal amino acids of other KChIPs and has only one EF-hand. We demonstrate that KChIP2d is a functional KChIP that both accelerates recovery and slows inactivation kinetics of Kv4.3, indicating that the minimal C-terminus can maintain KChIP regulatory properties. We utilize KChIP2d to further demonstrate that: (i) the EF-hand modulates effects on Kv4.3 inactivation but not recovery; (ii) Ca(2+)-dependent effects on Kv4.3 inactivation are mediated through a mechanism reflected in the slow time constant of inactivation; and (iii) a short stretch of amino acids exclusive of the EF-hand partially mediates Ca(2+)-independent effects on recovery. Our results demonstrate that distinct regions of a KChIP molecule are involved in modulating inactivation and recovery. The potential ability of KChIP EF-hands to sense intracellular Ca(2+) levels and transduce these changes to alterations in Kv4 channel inactivation kinetics may serve as a mechanism allowing intracellular Ca(2+) transients to modulate repolarization. KChIP2d is a valuable tool for elucidating structural domains of KChIPs involved in Kv4 channel regulation.

???displayArticle.pubmedLink??? 12433945
???displayArticle.pmcLink??? PMC2290650
???displayArticle.link??? J Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: kcnd3 kcnip2

References [+] :
An, Modulation of A-type potassium channels by a family of calcium sensors. 2000, Pubmed, Xenbase