Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6765
J Gen Physiol 2002 Aug 01;1202:191-201. doi: 10.1085/jgp.20028598.
Show Gene links Show Anatomy links

Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes.

Vuagniaux G , Vallet V , Jaeger NF , Hummler E , Rossier BC .


???displayArticle.abstract???
Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I(Na)) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I(Na) 6-10-fold in the Xenopus oocyte expression system. I(Na) and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I(125)-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I(Na) 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I(Na) by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I(Na) (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I(Na) was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.

???displayArticle.pubmedLink??? 12149280
???displayArticle.pmcLink??? PMC2234457
???displayArticle.link??? J Gen Physiol


Species referenced: Xenopus
Genes referenced: cap1 cap2 gnpda1 gpi hnmt prss1 prss8 sgk1 sp1 sp2 tmprss4


???attribute.lit??? ???displayArticles.show???
References [+] :
Adachi, Activation of epithelial sodium channels by prostasin in Xenopus oocytes. 2001, Pubmed, Xenbase