Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7062
Int Rev Cytol 2002 Jan 01;216:1-57. doi: 10.1016/s0074-7696(02)16002-5.
Show Gene links Show Anatomy links

Amphibians as a model for the study of endocrine disruptors.



???displayArticle.abstract???
Evidence shows that environmental compounds can interfere with the endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disruptors (EDs), which are mainly of anthropogenic origin, is surface water; thus, aquatic vertebrates such as fishes and amphibians are most endangered. Despite numerous reports on EDs in fishes, information about EDs in amphibians is scarce, and this paucity of information is of particular concern in view of the worldwide decline of amphibians. EDs could contribute to changes of amphibian populations via adverse effects on reproduction and the thyroid system. In amphibians, EDs can affect reproduction by (anti)estrogenic and (anti)androgenic modes of action that produce severe effects including abnormal sexual differentiation. ED actions on the thyroid system cause acceleration or retardation of metamorphosis, which may also affect population levels. Our broad knowledge of amphibian biology and endocrinology indicates that amphibians are very suitable models for the study of EDs. In particular, effects of EDs on the thyroid system triggering metamorphosis can be determined easily and most sensitively in amphibians compared to other vertebrates. A new classification of EDs according to their biological modes of action is proposed because EDs have quite heterogeneous chemical structures, which do not allow prediction of their biological effects. Methods and strategies are proposed for identification and risk assessment of EDs, whether as pure test substances or as mixtures from environmental samples. Effects of EDs on the thyroid system of amphibians can be assessed by a single animal model (Xenopus laevis), whereas the various types of reproduction need comparative studies to investigate whether general endocrine principles do exist among several species of anurans and urodeles. Thus, at least one anuran and one urodelean model are needed to determine ED interference with reproduction.

???displayArticle.pubmedLink??? 12049206
???displayArticle.link??? Int Rev Cytol