Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Cell Tissue Res February 1, 2001; 303 (2): 187-95.

Thyroid-hormone-dependent and fibroblast-specific expression of BMP-4 correlates with adult epithelial development during amphibian intestinal remodeling.

Ishizuya-Oka A , Ueda S , Amano T , Shimizu K , Suzuki K , Ueno N , Yoshizato K .

We have identified one of the genes that are up-regulated by thyroid hormone (TH) in Xenopus laevis small intestine as the Xenopus homolog of bone morphogenetic protein-4 (BMP-4). To clarify possible roles of BMP-4 in intestinal remodeling during metamorphosis, we have examined its expression in X. laevis intestine by using in situ hybridization and organ culture techniques. At the beginning of metamorphic climax, BMP-4 mRNA first becomes detectable in the connective tissue, concurrently with the appearance of adult epithelial primordia. Subsequently, when the adult epithelial primordia are actively proliferating, BMP-4 mRNA becomes more abundant only in the connective tissue with a gradient toward the epithelium. Thereafter, as the adult primordia differentiate, the level of BMP-4 mRNA gradually decreases. Thus, BMP-4 expression correlates well with cell proliferation and/or initial differentiation of the adult epithelium, but not with apoptosis of the larval epithelium. Furthermore, the present culture study indicates that (1) TH-induced expression of BMP-4 mRNA is higher in the anterior part of the intestine than in the posterior part, which agrees with the better development of the adult epithelium in the more anterior part, and that (2) the expression of BMP-4 mRNA is up-regulated by TH in the presence of epithelium, but not in its absence. Therefore, BMP-4, which is indirectly induced by TH through some epithelial factor(s), probably plays important roles in adult epithelial development during amphibian intestinal remodeling.

PubMed ID: 11291765
Article link: Cell Tissue Res

Species referenced: Xenopus
Genes referenced: bmp4