Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9555
Am J Physiol Regul Integr Comp Physiol 2001 Feb 01;2802:R301-12. doi: 10.1152/ajpregu.2001.280.2.R301.
Show Gene links Show Anatomy links

Evolution of the Na-P(i) cotransport systems.

Werner A , Kinne RK .


???displayArticle.abstract???
Membrane transport systems for P(i) transport are key elements in maintaining homeostasis of P(i) in organisms as diverse as bacteria and human. Two Na-P(i) cotransporter families with well-described functional properties in vertebrates, namely NaPi-II and NaPi-III, show conserved structural features with prokaryotic origin. A clear vertical relationship can be established among the mammalian protein family NaPi-III, a homologous system in C. elegans, the yeast system Pho89, and the bacterial P(i) transporter Pit. An alternative lineage connects the mammalian NaPi-II-related transporters with homologous proteins from Caenorhabditis elegans and Vibrio cholerae. The present review focuses on the molecular evolution of the NaPi-II protein family. Preliminary results indicate that the NaPi-II homologue cloned from V. cholerae is indeed a functional P(i) transporter when expressed in Xenopus oocytes. The closely related NaPi-II isoforms NaPi-IIa and NaPi-IIb are responsible for regulated epithelial Na-dependent P(i) transport in all vertebrates. Most species express two different NaPi-II proteins with the exception of the flounder and Xenopus laevis, which rely on only a single isoform. Using an RT-PCR-based approach with degenerate primers, we were able to identify NaPi-II-related mRNAs in a variety of vertebrates from different families. We hypothesize that the original NaPi-IIb-related gene was duplicated early in vertebrate development. The appearance of NaPi-IIa correlates with the development of the mammalian nephron.

???displayArticle.pubmedLink??? 11208556
???displayArticle.link??? Am J Physiol Regul Integr Comp Physiol