Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Search Papers

Search with Textpresso


Filter by Date: Year(4-digits)   to 

Results Per Page


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Can't find an article you're looking for? Click here to manually add an article by PubMed ID.


Results 1 - 50 of 119 results

Page(s): 1 2 3 Next

( Denotes literature images)
Search Results

Quantitative capillary zone electrophoresis-mass spectrometry reveals the N-glycome developmental plan during vertebrate embryogenesis., Qu Y, Dubiak KM, Peuchen EH, Champion MM, Zhang Z, Hebert AS, Wright S, Coon JJ, Huber PW, Dovichi NJ., Mol Omics. January 1, 2020; 16 (3): 210-220.


Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies., Deniz E, Jonas S, Khokha MK, Choma MA., Front Physiol. January 1, 2019; 10 1197.      


Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis., Manning CS, Biga V, Boyd J, Kursawe J, Ymisson B, Spiller DG, Sanderson CM, Galla T, Rattray M, Papalopulu N., Nat Commun. January 1, 2019; 10 (1): 2835.


Quantification of size effect on protein rotational mobility in cells by 19F NMR spectroscopy., Ye Y, Wu Q, Zheng W, Jiang B, Pielak GJ, Liu M, Li C., Anal Bioanal Chem. January 1, 2018; 410 (3): 869-874.


Quantitative Proteomics After Spinal Cord Injury (SCI) in a Regenerative and a Nonregenerative Stage in the Frog Xenopus laevis., Lee-Liu D, Sun L, Dovichi NJ, Larraín J., Mol Cell Proteomics. January 1, 2018; 17 (4): 592-606.                


Quantitative Proteomics for Xenopus Embryos II, Data Analysis., Sonnett M, Gupta M, Nguyen T, Wühr M., Methods Mol Biol. January 1, 2018; 1865 195-215.


Quantitative Proteomics of Xenopus Embryos I, Sample Preparation., Gupta M, Sonnett M, Ryazanova L, Presler M, Wühr M., Methods Mol Biol. January 1, 2018; 1865 175-194.


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD, Reiss JO, Paz DA, Pozzi AG., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Quantifying the relative contributions of different solute carriers to aggregate substrate transport., Taslimifar M, Oparija L, Verrey F, Kurtcuoglu V, Olgac U, Makrides V., Sci Rep. January 1, 2017; 7 40628.        


Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6., Jones RS, Parker MD, Morris ME., Mol Pharm. January 1, 2017; 14 (9): 2930-2936.


Quantifying the cooperative subunit action in a multimeric membrane receptor., Wongsamitkul N, Nache V, Eick T, Hummert S, Schulz E, Schmauder R, Schirmeyer J, Zimmer T, Benndorf K., Sci Rep. September 28, 2016; 6 20974.    


Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry., Hansen M, Luong X, Sedlak DL, Helbing CC, Hayes T., Anal Bioanal Chem. August 1, 2016; 408 (20): 5429-42.


Quantification of transcription factor-DNA binding affinity in a living cell., Belikov S, Berg OG, Wrange Ö., Nucleic Acids Res. April 20, 2016; 44 (7): 3045-58.            


Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails., Jasnin M, Crevenna AH., Biophys J. February 23, 2016; 110 (4): 817-26.


Quantification of X. laevis vitellogenin by liquid chromatography tandem mass spectrometry., Luna LG, Coady K., Ecotoxicol Environ Saf. February 1, 2016; 124 296-302.


Quantum dot assisted tracking of the intracellular protein Cyclin E in Xenopus laevis embryos., Brandt YI, Mitchell T, Smolyakov GA, Osiński M, Hartley RS., J Nanobiotechnology. April 29, 2015; 13 31.          


Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup., Gonnermann C, Huang C, Becker SF, Stamov DR, Wedlich D, Kashef J, Franz CM., Integr Biol (Camb). March 9, 2015; 7 (3): 356-63.


Quantification of orofacial phenotypes in Xenopus., Kennedy AE, Dickinson AJ., J Vis Exp. November 6, 2014; (93): e52062.


Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method., Chiba M, Miyazaki M, Ishiwata S., Biophys J. July 15, 2014; 107 (2): 346-54.


Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides., Al-Ani G, Briggs K, Malik SS, Conner M, Azuma Y, Fischer CJ., Biochemistry. July 15, 2014; 53 (27): 4334-45.          


Quantitative analysis of orofacial development and median clefts in Xenopus laevis., Kennedy AE, Dickinson AJ., Anat Rec (Hoboken). May 1, 2014; 297 (5): 834-55.


Quantitative analysis of cell arrangement indicates early differentiation of the neural region during Xenopus gastrulation., Yamashita S, Michiue T., J Theor Biol. April 7, 2014; 346 1-7.


Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum., Hrycyna CA, Summers RL, Lehane AM, Pires MM, Namanja H, Bohn K, Kuriakose J, Ferdig M, Henrich PP, Fidock DA, Kirk K, Chmielewski J, Martin RE., ACS Chem Biol. March 21, 2014; 9 (3): 722-30.


Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development., Sun L, Bertke MM, Champion MM, Zhu G, Huber PW, Dovichi NJ., Sci Rep. February 26, 2014; 4 4365.                              


Quantification of total thyroxine in plasma from Xenopus laevis., Luna LG, Coady K, McFadden JR, Markham DA, Bartels MJ., J Anal Toxicol. July 1, 2013; 37 (6): 326-36.


Quantification and localization of erythropoietin-receptor-expressing cells in the liver of Xenopus laevis., Okui T, Yamamoto Y, Maekawa S, Nagasawa K, Yonezuka Y, Aizawa Y, Kato T., Cell Tissue Res. July 1, 2013; 353 (1): 153-64.


Quantitative determination of lateral concentration and depth profile of histidine-tagged recombinant proteins probed by grazing incidence X-ray fluorescence., Körner A, Abuillan W, Deichmann C, Rossetti FF, Köhler A, Konovalov OV, Wedlich D, Tanaka M., J Phys Chem B. May 2, 2013; 117 (17): 5002-8.


Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry., Nemes P, Rubakhin SS, Aerts JT, Sweedler JV., Nat Protoc. April 1, 2013; 8 (4): 783-99.


Quantum dot conjugates of GABA and muscimol: binding to α1β2γ2 and ρ1 GABA(A) receptors., Gussin HA, Tomlinson ID, Cao D, Qian H, Rosenthal SJ, Pepperberg DR., ACS Chem Neurosci. March 20, 2013; 4 (3): 435-43.


Quantitative analysis of embryogenesis: a perspective for light sheet microscopy., Höckendorf B, Thumberger T, Wittbrodt J., Dev Cell. December 11, 2012; 23 (6): 1111-20.


Quantifying chromatin-associated interactions: the HI-FI system., Winkler DD, Luger K, Hieb AR., Methods Enzymol. January 1, 2012; 512 243-74.


Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens., Nakazawa Y, Oka M, Mitsuishi A, Bando M, Takehana M., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 125-30.


Quinoline antimalarials containing a dibemethin group are active against chloroquinone-resistant Plasmodium falciparum and inhibit chloroquine transport via the P. falciparum chloroquine-resistance transporter (PfCRT)., Zishiri VK, Joshi MC, Hunter R, Chibale K, Smith PJ, Summers RL, Martin RE, Egan TJ., J Med Chem. October 13, 2011; 54 (19): 6956-68.


Questioning the depolarizing effects of GABA during early brain development., Khakhalin AS., J Neurophysiol. September 1, 2011; 106 (3): 1065-7.


Quantification of the Mg2+-induced potency shift of amantadine and memantine voltage-dependent block in human recombinant GluN1/GluN2A NMDARs., Otton HJ, Lawson McLean A, Pannozzo MA, Davies CH, Wyllie DJ., Neuropharmacology. February 1, 2011; 60 (2-3): 388-96.


Quercetin Inhibits α3β4 Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes., Lee BH, Hwang SH, Choi SH, Shin TJ, Kang J, Lee SM, Nah SY., Korean J Physiol Pharmacol. February 1, 2011; 15 (1): 17-22.


Quantitative analysis of actin turnover in Listeria comet tails: evidence for catastrophic filament turnover., Kueh HY, Brieher WM, Mitchison TJ., Biophys J. October 6, 2010; 99 (7): 2153-62.


Quercetin enhances human α7 nicotinic acetylcholine receptor-mediated ion current through interactions with Ca(2+) binding sites., Lee BH, Choi SH, Shin TJ, Pyo MK, Hwang SH, Kim BR, Lee SM, Lee JH, Kim HC, Park HY, Rhim H, Nah SY., Mol Cells. September 1, 2010; 30 (3): 245-53.


Quinazolin-4-one derivatives: A novel class of noncompetitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists., Mosley CA, Acker TM, Hansen KB, Mullasseril P, Andersen KT, Le P, Vellano KM, Bräuner-Osborne H, Liotta DC, Traynelis SF., J Med Chem. August 12, 2010; 53 (15): 5476-90.


Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes., Bruno L, Solovey G, Ventura AC, Dargan S, Dawson SP., Cell Calcium. March 1, 2010; 47 (3): 273-86.


Quantitative characterization of filament dynamics by single-molecule lifetime measurements., Mirny LA, Needleman DJ., Methods Cell Biol. January 1, 2010; 95 583-600.


Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing., De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E, Klompmaker R, van Gerwen S, Fish A, Petoukhov MV, Iliou MS, Lygerou Z, Medema RH, Blow JJ, Svergun DI, Taraviras S, Perrakis A., Proc Natl Acad Sci U S A. November 24, 2009; 106 (47): 19807-12.


Qualitatively different cross-bridge attachments in fast and slow muscle fiber types., Galler S, Andruchov O, Stephenson GM, Stephenson DG., Biochem Biophys Res Commun. July 17, 2009; 385 (1): 44-8.


Quinazolindione derivatives as potent 5-HT3A receptor antagonists., Lee BH, Choi MJ, Jo MN, Seo HJ, Nah SY, Cho YS, Nam G, Pae AN, Rhim H, Choo H., Bioorg Med Chem. July 1, 2009; 17 (13): 4793-6.


Quercetin activates human Kv1.5 channels by a residue I502 in the S6 segment., Yang L, Ma JH, Zhang PH, Zou AR, Tu DN., Clin Exp Pharmacol Physiol. February 1, 2009; 36 (2): 154-61.


Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft., Showalter SA, Bruschweiler-Li L, Johnson E, Zhang F, Brüschweiler R., J Am Chem Soc. May 21, 2008; 130 (20): 6472-8.


Quinuclidines as selective agonists for alpha-7 nicotinic acetylcholine receptors., Leonik FM, Papke RL, Horenstein NA., Bioorg Med Chem Lett. March 15, 2007; 17 (6): 1520-2.


Quantification of Mg2+ extrusion and cytosolic Mg2+-buffering in Xenopus oocytes., Gabriel TE, Günzel D., Arch Biochem Biophys. February 1, 2007; 458 (1): 3-15.


Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines., Regeer RR, Nicke A, Markovich D., Int J Biochem Cell Biol. January 1, 2007; 39 (12): 2240-51.


Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells., Hallaq H, Yang Z, Viswanathan PC, Fukuda K, Shen W, Wang DW, Wells KS, Zhou J, Yi J, Murray KT., Cardiovasc Res. November 1, 2006; 72 (2): 250-61.

Page(s): 1 2 3 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556