Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Images Attributions Wiki Source
XB-ANTIBODY-14579221

Attributions for Tuba4b Ab4

Summary: Papers (41) ???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Bidirectional multiciliated cell extrusion is controlled by Notch-driven basal extrusion and Piezo1-driven apical extrusion., Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan OA, Suva EE, Walentek P, Mitchell BJ., Development. September 1, 2023; 150 (17):                         


Kif9 is an active kinesin motor required for ciliary beating and proximodistal patterning of motile axonemes., Konjikusic MJ, Lee C, Lee C, Yue Y, Shrestha BD, Nguimtsop AM, Horani A, Brody S, Prakash VN, Gray RS, Verhey KJ, Wallingford JB., J Cell Sci. March 1, 2023; 136 (5):                       


GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base., Jang DG, Kwon KY, Kweon YC, Kim BG, Myung K, Lee HS, Young Park C, Kwon T, Park TJ., Elife. August 25, 2022; 11                                       


Evolutionary conservation of leptin effects on wound healing in vertebrates: Implications for veterinary medicine., Reeve RE, Quale K, Curtis GH, Crespi EJ., Front Endocrinol (Lausanne). January 1, 2022; 13 938296.              


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M, Hoppmann A, Schlosser P, Grand K, Song W, Diehl R, Schroda S, Heeg F, Deutsch K, Hildebrandt F, Lausch E, Köttgen A, Lienkamp SS., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


Tubulin acetylation promotes penetrative capacity of cells undergoing radial intercalation., Collins C, Kim SK, Ventrella R, Carruzzo HM, Wortman JC, Han H, Suva EE, Mitchell JW, Yu CC, Mitchell BJ., Cell Rep. August 17, 2021; 36 (7): 109556.                


RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis., Kim H, Lee YS, Kim SM, Jang S, Choi H, Lee JW, Kim TD, Kim VN., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.                                  


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J, García-Verdugo JM, Larraín J., Neural Dev. February 2, 2021; 16 (1): 2.                              


Hyperinnervation improves Xenopus laevis limb regeneration., Mitogawa K, Makanae A, Satoh A., Dev Biol. January 15, 2018; 433 (2): 276-286.                    


hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus., Prager A, Hagenlocher C, Ott T, Schambony A, Feistel K., Dev Biol. October 1, 2017; 430 (1): 188-201.                      


The microtubule plus-end-tracking protein TACC3 promotes persistent axon outgrowth and mediates responses to axon guidance signals during development., Erdogan B, Cammarata GM, Lee EJ, Pratt BC, Francl AF, Rutherford EL, Lowery LA., Neural Dev. February 15, 2017; 12 (1): 3.        


Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa., Vent-Schmidt RYJ, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL., J Neurosci. January 25, 2017; 37 (4): 1039-1054.                  


A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification., Rankin SA, Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM., Cell Rep. June 28, 2016; 16 (1): 66-78.                                              


c21orf59/kurly Controls Both Cilia Motility and Polarization., Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, Pelliccia JL, Morante NF, Mitchell BJ, Burdine RD., Cell Rep. March 1, 2016; 14 (8): 1841-9.                  


Huntingtin is required for ciliogenesis and neurogenesis during early Xenopus development., Haremaki T, Deglincerti A, Brivanlou AH., Dev Biol. December 15, 2015; 408 (2): 305-15.            


CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus., Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK., Dev Biol. December 15, 2015; 408 (2): 196-204.            


SPARC triggers a cell-autonomous program of synapse elimination., López-Murcia FJ, Terni B, Llobet A., Proc Natl Acad Sci U S A. October 27, 2015; 112 (43): 13366-71.              


BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L., Development. July 1, 2015; 142 (13): 2352-63.                        


Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis., Liu Y, Wang C, Wang C, Destin G, Szaro BG., Eur J Neurosci. May 1, 2015; 41 (10): 1263-75.            


ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled., Miyatake K, Kusakabe M, Takahashi C, Nishida E., Nat Commun. March 31, 2015; 6 6666.                


The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin., Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A., Development. January 1, 2015; 142 (1): 174-84.                                            


Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration., Hayashi S, Ochi H, Ogino H, Kawasumi A, Kamei Y, Tamura K, Tamura K, Yokoyama H., Dev Biol. December 1, 2014; 396 (1): 31-41.                      


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S, Li J, Lea R, Vleminckx K, Vleminckx K, Amaya E., Development. December 1, 2014; 141 (24): 4794-805.                            


Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages., Lee-Liu D, Moreno M, Almonacid LI, Tapia VS, Muñoz R, von Marées J, Gaete M, Melo F, Larraín J., Neural Dev. May 22, 2014; 9 12.              


RFX7 is required for the formation of cilia in the neural tube., Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y., Mech Dev. May 1, 2014; 132 28-37.                  


Sp8 regulates inner ear development., Chung HA, Medina-Ruiz S, Harland RM., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration., Hayashi S, Tamura K, Yokoyama H., Dev Biol. April 1, 2014; 388 (1): 57-67.


Coordinated genomic control of ciliogenesis and cell movement by RFX2., Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB., Elife. January 1, 2014; 3 e01439.                                                  


Stabilization of speckle-type POZ protein (Spop) by Daz interacting protein 1 (Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling., Schwend T, Jin Z, Jiang K, Mitchell BJ, Jia J, Yang J., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.                


Kidins220/ARMS is dynamically expressed during Xenopus laevis development., Marracci S, Giannini M, Vitiello M, Andreazzoli M, Dente L., Int J Dev Biol. January 1, 2013; 57 (9-10): 787-92.            


Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease., Dubaissi E, Papalopulu N., Dis Model Mech. March 1, 2011; 4 (2): 179-92.                        


Xenopus axin-related protein: a link between its centrosomal localization and function in the Wnt/beta-catenin pathway., Alexandrova EM, Sokol SY., Dev Dyn. January 1, 2010; 239 (1): 261-70.            


Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis., Vick P, Schweickert A, Weber T, Eberhardt M, Mencl S, Shcherbakov D, Beyer T, Blum M., Dev Biol. July 15, 2009; 331 (2): 281-91.                                        


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U, Pickney LM, Ozpolat BD, Wessely O., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration., Suzuki M, Satoh A, Ide H, Tamura K, Tamura K., Dev Biol. October 1, 2005; 286 (1): 361-75.              


Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro., Tonge DA, Pountney DJ, Leclere PG, Zhu N, Pizzey JA., Dev Biol. January 1, 2004; 265 (1): 169-80.                


Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos., Danilchik MV, Funk WC, Brown EE, Larkin K., Dev Biol. February 1, 1998; 194 (1): 47-60.                              


Essential role of heparan sulfates in axon navigation and targeting in the developing visual system., Walz A, McFarlane S, Brickman YG, Nurcombe V, Bartlett PF, Holt CE., Development. June 1, 1997; 124 (12): 2421-30.        


The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules., Gard DL, Cha BJ, King E., Dev Biol. April 1, 1997; 184 (1): 95-114.                  


Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene., Gard DL, Affleck D, Error BM., Dev Biol. March 1, 1995; 168 (1): 189-201.            

???pagination.result.page??? 1