Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2920) Expression Attributions Wiki
XB-ANAT-23

Papers associated with skin (and rho)

Limit to papers also referencing gene:
Show all skin papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

β-adrenergic receptor regulates embryonic epithelial extensibility through actomyosin inhibition., Mizoguchi Y., iScience. December 15, 2023; 26 (12): 108469.                            


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Melanopsin phototransduction: beyond canonical cascades., Contreras E., J Exp Biol. December 1, 2021; 224 (23):         


Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity., Bertolesi GE., Front Neuroanat. January 1, 2021; 15 784478.      


The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors., Bertolesi GE., J Photochem Photobiol B. November 1, 2020; 212 112024.  


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates., Kim HY, Kim HY., Nat Commun. January 31, 2020; 11 (1): 665.                


Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment., Rawlinson KA., Elife. October 22, 2019; 8                     


Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled., Lee M., J Cell Biol. August 5, 2019; 218 (8): 2659-2676.              


Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance., Bustamante-Marin XM., Am J Hum Genet. February 7, 2019; 104 (2): 229-245.                                  


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus., Li J., Regeneration (Oxf). October 28, 2016; 3 (4): 198-208.        


miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways., Chevalier B., Nat Commun. September 18, 2015; 6 8386.                


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T., Cilia. August 1, 2012; 1 (1): 13.                        


TASK1 (K(2P)3.1) K(+) channel inhibition by endothelin-1 is mediated through Rho kinase-dependent phosphorylation., Seyler C., Br J Pharmacol. March 1, 2012; 165 (5): 1467-75.


Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity., Cho K., J Cell Sci. December 1, 2010; 123 (Pt 23): 4128-44.              


Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases., Gu D., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.            


Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells., Park TJ., Nat Genet. July 1, 2008; 40 (7): 871-9.      


Cyclothiazide: a subunit-specific inhibitor of GABAC receptors., Xie A., J Physiol. June 1, 2008; 586 (11): 2743-52.


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis., Lavery DL., Dev Dyn. March 1, 2008; 237 (3): 768-79.          


ANR5, an FGF target gene product, regulates gastrulation in Xenopus., Chung HA., Curr Biol. June 5, 2007; 17 (11): 932-9.                  


Stable knock-down of vomeronasal receptor genes in transgenic Xenopus tadpoles., Kashiwagi A., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 140-7.          


Enantiomers of cis-constrained and flexible 2-substituted GABA analogues exert opposite effects at recombinant GABA(C) receptors., Crittenden DL., Bioorg Med Chem. January 15, 2006; 14 (2): 447-55.


Shroom induces apical constriction and is required for hingepoint formation during neural tube closure., Haigo SL., Curr Biol. December 16, 2003; 13 (24): 2125-37.                          


Identification of 3,4-didehydroretinal isomers in the Xenopus tadpole tail fin containing photosensitive melanophores., Okano K., Zoolog Sci. February 1, 2002; 19 (2): 191-5.


Expression of opsin molecule in cultured murine melanocyte., Miyashita Y., J Investig Dermatol Symp Proc. November 1, 2001; 6 (1): 54-7.


Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis., Patel A., Dev Biol. June 1, 2000; 222 (1): 170-80.          


Diversity of opsin immunoreactivities in the extraretinal tissues of four anuran amphibians., Okano K., J Exp Zool. February 1, 2000; 286 (2): 136-42.


Pax6 induces ectopic eyes in a vertebrate., Chow RL., Development. October 1, 1999; 126 (19): 4213-22.              


Melanopsin: An opsin in melanophores, brain, and eye., Provencio I., Proc Natl Acad Sci U S A. January 6, 1998; 95 (1): 340-5.        


Light-sensitive response in melanophores of Xenopus laevis: II.Rho is involved in light-induced melanin aggregation., Miyashita Y., J Exp Zool. October 1, 1996; 276 (2): 125-31.


Light-sensitive response in melanophores of Xenopus laevis: I. Spectral characteristics of melanophore response in isolated tail fin of Xenopus tadpole., Moriya T., J Exp Zool. September 1, 1996; 276 (1): 11-8.


Characterization of the Xenopus rhodopsin gene., Batni S., J Biol Chem. February 9, 1996; 271 (6): 3179-86.              


Action of light on frog pigment cells in culture., Daniolos A., Pigment Cell Res. January 1, 1990; 3 (1): 38-43.

???pagination.result.page??? 1