Results 1 - 50 of 463 results
Expression analysis of thg1l during Xenopus laevis development. , Martini D., Int J Dev Biol. July 15, 2024; 68 (2): 85-91.
Mechanistic study of transcription factor Sox18 during heart development. , Liang J., Gen Comp Endocrinol. May 1, 2024; 350 114472.
Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. , Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.
Developmental expression of peroxiredoxin gene family in early embryonic development of Xenopus tropicalis. , Zhong L., Gene Expr Patterns. December 1, 2023; 50 119345.
Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. , Raghavan R., BMC Ecol Evol. October 27, 2023; 23 (1): 63.
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. , Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.
Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis. , Carotenuto R., Nanomaterials (Basel). September 4, 2023; 13 (17):
Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. , Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.
Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. , Hantel F., J Cell Sci. May 1, 2022; 135 (9):
Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. , Vonica A ., Dev Biol. April 1, 2020; 464 (1): 71-87.
Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis. , Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.
Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. , McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.
Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling. , Pinet K., Development. July 22, 2019; 146 (14):
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development. , Seigfried FA., Gene Expr Patterns. June 1, 2018; 28 54-61.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture. , Takahashi C ., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
The phosphatase Pgam5 antagonizes Wnt/ β-Catenin signaling in embryonic anterior- posterior axis patterning. , Rauschenberger V., Development. June 15, 2017; 144 (12): 2234-2247.
Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. , Lansdon LA., Genetics. January 21, 2017; 208 (1): 283-296.
Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. , Neilson KM ., Dev Biol. January 15, 2017; 421 (2): 171-182.
Functional differences between Tcf1 isoforms in early Xenopus development. , Roël G., Int J Dev Biol. January 1, 2017; 61 (1-2): 29-34.
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis. , Robson A., BMC Dev Biol. October 26, 2016; 16 (1): 38.
Comparative expression study of sipa family members during early Xenopus laevis development. , Rothe M., Dev Genes Evol. September 1, 2016; 226 (5): 369-82.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.
Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development. , Fuentealba J., Gene Expr Patterns. September 1, 2016; 22 (1): 15-25.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
In vivo confinement promotes collective migration of neural crest cells. , Szabó A., J Cell Biol. June 6, 2016; 213 (5): 543-55.
Identification of anti-cancer chemical compounds using Xenopus embryos. , Tanaka M., Cancer Sci. June 1, 2016; 107 (6): 803-11.
E-cadherin is required for cranial neural crest migration in Xenopus laevis. , Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. , Schille C., BMC Dev Biol. January 19, 2016; 16 1.
Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. , Green YS., Gene Expr Patterns. January 1, 2016; 20 (1): 55-62.
pdzrn3 is required for pronephros morphogenesis in Xenopus laevis. , Marracci S ., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.
Expressional characterization of mRNA (guanine-7) methyltransferase ( rnmt) during early development of Xenopus laevis. , Lokapally A., Int J Dev Biol. January 1, 2016; 60 (1-3): 65-9.
Hepatocystin is Essential for TRPM7 Function During Early Embryogenesis. , Overton JD., Sci Rep. December 16, 2015; 5 18395.
Hspa9 is required for pronephros specification and formation in Xenopus laevis. , Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.
Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. , Sipieter F., PLoS One. October 20, 2015; 10 (10): e0140924.
Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins. , Saritas-Yildirim B., PLoS One. September 1, 2015; 10 (9): e0136929.
A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis. , Carmel MS., PLoS One. August 4, 2015; 10 (8): e0136408.
The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes. , Shibano T., PLoS One. May 6, 2015; 10 (5): e0127271.
RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. , Pfirrmann T ., PLoS One. March 16, 2015; 10 (3): e0120342.
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. , Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.
Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. , Uy BR., Dev Biol. January 15, 2015; 397 (2): 282-92.
A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. , Square T ., Dev Biol. January 15, 2015; 397 (2): 293-304.
A novel function for Egr4 in posterior hindbrain development. , Bae CJ., Sci Rep. January 12, 2015; 5 7750.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.