Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2282) Expression Attributions Wiki
XB-ANAT-1506

Papers associated with skeletal element (and inhba)

Limit to papers also referencing gene:
Show all skeletal element papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells., Miyazaki A., PLoS One. January 1, 2012; 7 (10): e46630.        


Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules., Scardigli R., PLoS One. June 18, 2008; 3 (6): e2471.                    


Elucidation of the role of activin in organogenesis using a multiple organ induction system with amphibian and mouse undifferentiated cells in vitro., Asashima M., Dev Growth Differ. June 1, 2008; 50 Suppl 1 S35-45.


DRAGON, a bone morphogenetic protein co-receptor., Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.                  


Induction of tooth and eye by transplantation of activin A-treated, undifferentiated presumptive ectodermal Xenopus cells into the abdomen., Myoishi Y., Int J Dev Biol. December 1, 2004; 48 (10): 1105-12.


Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms., Chang C., Dev Biol. March 1, 2003; 255 (1): 1-11.                    


Long-term culture of Xenopus presumptive ectoderm in a nutrient-supplemented culture medium., Fukui Y., Dev Growth Differ. January 1, 2003; 45 (5-6): 499-506.        


Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro., Furue M., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15474-9.    


Synthesis and release of activin and noggin by cultured human amniotic epithelial cells., Koyano S., Dev Growth Differ. April 1, 2002; 44 (2): 103-12.            


Role of the thrombopoietin (TPO)/Mpl system: c-Mpl-like molecule/TPO signaling enhances early hematopoiesis in Xenopus laevis., Kakeda M., Dev Growth Differ. February 1, 2002; 44 (1): 63-75.                


Isolation and characterization of bone morphogenetic protein-binding proteins from the early Xenopus embryo., Iemura S., J Biol Chem. September 17, 1999; 274 (38): 26843-9.


Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis., Osada SI., Development. June 1, 1999; 126 (14): 3229-40.                


Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo., Iemura S., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9337-42.            


Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning., Nakayama T., Development. March 1, 1998; 125 (5): 857-67.                  


In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation., Kanatsu M., Development. March 1, 1996; 122 (3): 823-30.


Factors responsible for the establishment of the body plan in the amphibian embryo., Grunz H., Int J Dev Biol. February 1, 1996; 40 (1): 279-89.            


Activin receptors: cellular signalling by receptor serine kinases., Zimmerman CM., Biochem Soc Symp. January 1, 1996; 62 25-38.


Bone morphogenetic protein 2 in the early development of Xenopus laevis., Clement JH., Mech Dev. August 1, 1995; 52 (2-3): 357-70.            


Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development., Johansson BM., Mol Cell Biol. January 1, 1995; 15 (1): 141-51.

???pagination.result.page??? 1