Results 1 - 15 of 15 results
Developmental expression of peroxiredoxin gene family in early embryonic development of Xenopus tropicalis. , Zhong L., Gene Expr Patterns. December 1, 2023; 50 119345.
Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development. , Seigfried FA., Gene Expr Patterns. June 1, 2018; 28 54-61.
The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. , Smith SJ ., Dev Biol. August 15, 2016; 416 (2): 373-88.
Annexin A3 Regulates Early Blood Vessel Formation. , Meadows SM., PLoS One. July 16, 2015; 10 (7): e0132580.
A transgenic Xenopus laevis reporter model to study lymphangiogenesis. , Ny A., Biol Open. July 11, 2013; 2 (9): 882-90.
VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. , Ciau-Uitz A ., Development. June 1, 2013; 140 (12): 2632-42.
Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification. , Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.
Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. , Cha HJ., PLoS Biol. January 1, 2012; 10 (8): e1001379.
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. , Saharinen P., Genes Dev. May 1, 2010; 24 (9): 875-80.
Systematic discovery of nonobvious human disease models through orthologous phenotypes. , McGary KL., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6544-9.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. , Kälin RE., Dev Biol. May 15, 2007; 305 (2): 599-614.
Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. , Cox CM., Dev Biol. August 1, 2006; 296 (1): 177-89.
Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis. , Levine AJ., Dev Biol. February 1, 2003; 254 (1): 50-67.
The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. , Helbling PM., Development. January 1, 2000; 127 (2): 269-78.