Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14667) Expression Attributions Wiki
XB-ANAT-213

Papers associated with central nervous system (and gria2)

Limit to papers also referencing gene:
Show all central nervous system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


The biochemical anatomy of cortical inhibitory synapses., Heller EA., PLoS One. January 1, 2012; 7 (6): e39572.            


Ionotropic glutamate receptor AMPA 1 is associated with ovulation rate., Sugimoto M., PLoS One. November 3, 2010; 5 (11): e13817.          


DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition., Kanno T., J Cell Physiol. October 1, 2009; 221 (1): 183-8.


Co-expression of Argonaute2 Enhances Short Hairpin RNA-induced RNA Interference in Xenopus CNS Neurons In Vivo., Chen CM., Front Neurosci. July 9, 2009; 3 63.            


Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina., Fahrenfort I., PLoS One. June 30, 2009; 4 (6): e6090.                        


Translational regulation of GluR2 mRNAs in rat hippocampus by alternative 3' untranslated regions., Irier HA., J Neurochem. April 1, 2009; 109 (2): 584-94.


Electrophysiological properties of AMPA receptors are differentially modulated depending on the associated member of the TARP family., Kott S., J Neurosci. April 4, 2007; 27 (14): 3780-9.


CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA., Huang YS., EMBO J. October 18, 2006; 25 (20): 4865-76.


AMPA receptors regulate experience-dependent dendritic arbor growth in vivo., Haas K., Proc Natl Acad Sci U S A. August 8, 2006; 103 (32): 12127-31.


3-hydroxypyridazine 1-oxides as carboxylate bioisosteres: a new series of subtype-selective AMPA receptor agonists., Greenwood JR., Neuropharmacology. July 1, 2006; 51 (1): 52-9.


Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists., Mayer ML., J Neurosci. March 15, 2006; 26 (11): 2852-61.


Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology., Frølund B., Bioorg Med Chem. September 15, 2005; 13 (18): 5391-8.


Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2., Holm MM., Proc Natl Acad Sci U S A. August 23, 2005; 102 (34): 12053-8.


Identification of subunit- and antagonist-specific amino acid residues in the N-Methyl-D-aspartate receptor glutamate-binding pocket., Kinarsky L., J Pharmacol Exp Ther. June 1, 2005; 313 (3): 1066-74.


Molecular constituents of neuronal AMPA receptors., Fukata Y., J Cell Biol. May 9, 2005; 169 (3): 399-404.        


Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling., Chen PE., Mol Pharmacol. May 1, 2005; 67 (5): 1470-84.


Tyr702 is an important determinant of agonist binding and domain closure of the ligand-binding core of GluR2., Frandsen A., Mol Pharmacol. March 1, 2005; 67 (3): 703-13.


Ethanol sensitivity of recombinant homomeric and heteromeric AMPA receptor subunits expressed in Xenopus oocytes., Akinshola BE., Alcohol Clin Exp Res. December 1, 2003; 27 (12): 1876-83.


Structural model of the N-methyl-D-aspartate receptor glycine site probed by site-directed chemical coupling., Foucaud B., J Biol Chem. June 27, 2003; 278 (26): 24011-7.


Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes., Armstrong N., Proc Natl Acad Sci U S A. May 13, 2003; 100 (10): 5736-41.


(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology., Brehm L., J Med Chem. April 10, 2003; 46 (8): 1350-8.


Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate., Jin R., Biochemistry. December 31, 2002; 41 (52): 15635-43.


Does acetaldehyde mediate ethanol action in the central nervous system?, Mascia MP., Alcohol Clin Exp Res. November 1, 2001; 25 (11): 1570-5.


The contributions of GluR2 to allosteric modulation of AMPA receptors., Cotton JL., Neuropharmacology. January 1, 2000; 39 (1): 21-31.


Primary structure and functional expression of the AMPA/kainate receptor subunit 2 from human brain., Sun W., Neuroreport. January 12, 1994; 5 (4): 441-4.


Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins., Brackley PT., J Pharmacol Exp Ther. September 1, 1993; 266 (3): 1573-80.


Identification of a subunit-specific antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor channels., Keller BU., Proc Natl Acad Sci U S A. January 15, 1993; 90 (2): 605-9.


Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam., Tsuzuki K., Brain Res Mol Brain Res. November 1, 1992; 16 (1-2): 105-10.


Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors., Sun W., Proc Natl Acad Sci U S A. February 15, 1992; 89 (4): 1443-7.

???pagination.result.page??? 1