Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (40) Expression Attributions Wiki

Papers associated with glomeral mesenchyme

Limit to papers also referencing gene:
Results 1 - 40 of 40 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      

Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies., Desgrange A., Cells. September 11, 2015; 4 (3): 483-99.      

Integrating temperature with odor processing in the olfactory bulb., Kludt E., J Neurosci. May 20, 2015; 35 (20): 7892-902.

Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              

Olfactory wiring logic in amphibians challenges the basic assumptions of the unbranched axon concept., Hassenklöver T., J Neurosci. October 30, 2013; 33 (44): 17247-52.

Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream., Gliem S., Cell Mol Life Sci. June 1, 2013; 70 (11): 1965-84.                

HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2., Heliot C., Development. February 1, 2013; 140 (4): 873-85.  

Glcci1 deficiency leads to proteinuria., Nishibori Y., J Am Soc Nephrol. November 1, 2011; 22 (11): 2037-46.

The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        

Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            

Zebrafish kidney development., Drummond IA., Methods Cell Biol. January 1, 2010; 100 233-60.

A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier., Ebarasi L., Dev Biol. October 1, 2009; 334 (1): 1-9.      

Odor coding by modules of coherent mitral/tufted cells in the vertebrate olfactory bulb., Chen TW., Proc Natl Acad Sci U S A. February 17, 2009; 106 (7): 2401-6.

Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        

The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.                

Kidney development and gene expression in the HIF2alpha knockout mouse., Steenhard BM., Dev Dyn. April 1, 2007; 236 (4): 1115-25.        

Cadherin-6 is required for zebrafish nephrogenesis during early development., Kubota F., Int J Dev Biol. January 1, 2007; 51 (2): 123-9.

FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    

Large-scale identification of genes implicated in kidney glomerulus development and function., Takemoto M., EMBO J. March 8, 2006; 25 (5): 1160-74.

The cellular basis of kidney development., Dressler GR., Annu Rev Cell Dev Biol. January 1, 2006; 22 509-29.

Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes., Kramer-Zucker AG., Dev Biol. September 15, 2005; 285 (2): 316-29.

Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus., Gerth VE., Dev Dyn. July 1, 2005; 233 (3): 1131-9.          

Expression profile of the RNA-binding protein gene hermes during chicken embryonic development., Wilmore HP., Dev Dyn. July 1, 2005; 233 (3): 1045-51.          

Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.            

Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment., Zhou X., Dev Dyn. May 1, 2005; 233 (1): 142-4.    

Individual olfactory sensory neurons project into more than one glomerulus in Xenopus laevis tadpole olfactory bulb., Nezlin LP., J Comp Neurol. January 17, 2005; 481 (3): 233-9.

Expression of EGFP/SDCT1 fusion protein, subcellular localization signal analysis, tissue distribution and electrophysiological function study., Bai X., Sci China C Life Sci. December 1, 2004; 47 (6): 530-9.

Kidney development conserved over species: essential roles of Sall1., Nishinakamura R., Semin Cell Dev Biol. August 1, 2003; 14 (4): 241-7.      

Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers., Barletta GM., J Biol Chem. May 23, 2003; 278 (21): 19266-71.

Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis., Boyd JD., J Comp Neurol. December 2, 2002; 454 (1): 42-57.  

Nephron structure and immunohistochemical localization of ion pumps and aquaporins in the kidney of frogs inhabiting different environments., Uchiyama M., Symp Soc Exp Biol. January 1, 2002; (54): 109-28.

Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.                      

Regulation of filtration rate by glomerular mesangial cells in health and diabetic renal disease., Stockand JD., Am J Kidney Dis. June 1, 1997; 29 (6): 971-81.

Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease., Steinmeyer K., J Biol Chem. December 29, 1995; 270 (52): 31172-7.

Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization., Abe T., J Clin Invest. August 1, 1995; 96 (2): 657-64.

Parvalbumin-immunoreactive material in the kidney of Xenopus laevis., Kerschbaum HH., Tissue Cell. February 1, 1994; 26 (1): 75-81.

Wasting disease associated with cutaneous and renal nematodes, in commercially obtained Xenopus laevis., Brayton C., Ann N Y Acad Sci. June 16, 1992; 653 197-201.

Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  

The distribution of E-cadherin during Xenopus laevis development., Levi G., Development. January 1, 1991; 111 (1): 159-69.                

Principles of organization of the vertebrate olfactory glomerulus: an hypothesis., Graziadei PP., Neuroscience. December 1, 1986; 19 (4): 1025-35.

Page(s): 1