Results 1 - 50 of 148 results
SoxB1 transcription factors are essential for initiating and maintaining neural plate border gene expression. , Schock EN ., Development. July 15, 2024; 151 (14):
Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure. , Suzuki M ., Dev Growth Differ. June 26, 2024; 66 (5): 320-328.
Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues. , Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):
Enhancement of neural crest formation by mechanical force in Xenopus development. , Kaneshima T., Int J Dev Biol. January 1, 2024; 68 (1): 25-37.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. , Shah AM., Dis Model Mech. March 3, 2020; 13 (3):
The neural border: Induction, specification and maturation of the territory that generates neural crest cells. , Pla P., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.
Dkk2 promotes neural crest specification by activating Wnt/ β-catenin signaling in a GSK3β independent manner. , Devotta A., Elife. July 23, 2018; 7
C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis. , Moore KB ., Dev Biol. May 1, 2018; 437 (1): 27-40.
Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus. , Hong CS ., Genesis. December 1, 2017; 55 (12):
A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure. , Komiya Y., Sci Rep. November 15, 2017; 7 (1): 15623.
A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. , Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.
Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. , Marchak A., Dev Biol. September 1, 2017; 429 (1): 213-224.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Conserved gene regulatory module specifies lateral neural borders across bilaterians. , Li Y., Proc Natl Acad Sci U S A. August 1, 2017; 114 (31): E6352-E6360.
Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates. , Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.
ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus. , Ma P., Open Biol. August 1, 2017; 7 (8):
sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis. , Exner CRT., Dev Biol. May 1, 2017; 425 (1): 33-43.
Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development. , Yokota C., Int J Dev Biol. January 1, 2017; 61 (6-7): 415-425.
Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border. , Schille C., Development. September 1, 2016; 143 (17): 3182-94.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. , Schille C., BMC Dev Biol. January 19, 2016; 16 1.
Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration. , Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.
DEVELOPMENTAL BIOLOGY. It''s about time for neural crest. , Hoppler S ., Science. June 19, 2015; 348 (6241): 1316-7.
The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. , Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.
The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus. , Matsukawa S ., Dev Biol. March 1, 2015; 399 (1): 164-176.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. , Uy BR., Dev Biol. January 15, 2015; 397 (2): 282-92.
A novel function for Egr4 in posterior hindbrain development. , Bae CJ., Sci Rep. January 12, 2015; 5 7750.
Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development. , Zhang Z ., PLoS One. December 15, 2014; 9 (12): e115165.
Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching. , Hong CS ., Genesis. December 1, 2014; 52 (12): 946-51.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. , Kuriyama S ., J Cell Biol. July 7, 2014; 206 (1): 113-27.
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. , Schlosser G ., Dev Biol. May 1, 2014; 389 (1): 98-119.
Setting appropriate boundaries: fate, patterning and competence at the neural plate border. , Groves AK., Dev Biol. May 1, 2014; 389 (1): 2-12.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. , Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.
Identification of Pax3 and Zic1 targets in the developing neural crest. , Bae CJ., Dev Biol. February 15, 2014; 386 (2): 473-83.
Role of Sp5 as an essential early regulator of neural crest specification in xenopus. , Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.
The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. , Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.
An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis. , Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Essential role of AWP1 in neural crest specification in Xenopus. , Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.
Current perspectives of the signaling pathways directing neural crest induction. , Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.
Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. , Das S., Dev Dyn. August 1, 2012; 241 (8): 1260-73.