Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (76) Expression Attributions Wiki
XB-ANAT-3926

Papers associated with

Limit to papers also referencing gene:
Results 1 - 50 of 76 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY., Endocrinology. November 1, 2014; 155 (11): 4202-14.


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


A proteome map of the pituitary melanotrope cell activated by black-background adaptation of Xenopus laevis., Bart D., Proteomics. February 1, 2010; 10 (3): 574-80.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia., Roubos EW., Ann N Y Acad Sci. April 1, 2009; 1163 292-5.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH., Gen Comp Endocrinol. January 1, 2007; 153 (1-3): 176-81.      


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM., Neuroscience. January 1, 2004; 128 (3): 531-43.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Endogenous production of nitric oxide and effects of nitric oxide and superoxide on melanotrope functioning in the pituitary pars intermedia of Xenopus laevis., Allaerts W., Nitric Oxide. February 1, 2000; 4 (1): 15-28.


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor., Van Strien FJ., Endocrinology. October 1, 1996; 137 (10): 4298-307.


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis., Berghs CA., Neuroscience. February 1, 1996; 70 (3): 833-41.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis., Roubos EW., Cell Tissue Res. December 1, 1993; 274 (3): 587-96.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Alpha,N-acetyl beta-endorphin [1-8] is the terminal product of processing of endorphins in the melanotrope cells of Xenopus laevis, as demonstrated by FAB tandem mass spectrometry., van Strien FJ., Biochem Biophys Res Commun. February 26, 1993; 191 (1): 262-8.


The processing of beta-endorphin and alpha-melanotrophin in the pars intermedia of Xenopus laevis is influenced by background adaptation., Maruthainar K., J Endocrinol. December 1, 1992; 135 (3): 469-78.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis., Ayoubi TA., Endocrinology. June 1, 1992; 130 (6): 3560-6.


Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis., de Rijk EP., Cytometry. January 1, 1992; 13 (8): 863-71.


Presence of Vi-transposon-like elements in the proopiomelanocortin gene A of Xenopus laevis does not affect gene activity., Deen PM., Mol Gen Genet. December 1, 1991; 230 (3): 491-3.


Indirect action of elevated potassium and neuropeptide Y on alpha MSH secretion from the pars intermedia of Xenopus laevis: a biochemical and morphological study., de Koning HP., Neuroendocrinology. July 1, 1991; 54 (1): 68-76.


[125I]Bolton-Hunter neuropeptide-Y-binding sites on folliculo-stellate cells of the pars intermedia of Xenopus laevis: a combined autoradiographic and immunocytochemical study., De Rijk EP., Endocrinology. February 1, 1991; 128 (2): 735-40.


The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis., Jenks BG., Life Sci. January 1, 1991; 48 (17): 1633-7.


Demonstration of dopamine in electron-dense synaptic vesicles in the pars intermedia of Xenopus laevis, by freeze substitution and postembedding immunogold electron microscopy., van Strien FJ., Histochemistry. January 1, 1991; 96 (6): 505-10.


Characterization of the cDNA encoding proopiomelanocortin in the frog Rana ridibunda., Hilario E., Biochem Biophys Res Commun. December 14, 1990; 173 (2): 653-9.


Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation., de Rijk EP., Gen Comp Endocrinol. July 1, 1990; 79 (1): 74-82.


Melanin concentrating hormone. V. Isolation and characterization of alpha-melanocyte-stimulating hormone from frog pituitary glands., Tonon MC., Life Sci. January 1, 1989; 45 (13): 1155-61.


N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process., Verburg-van Kemenade BM., Neuroendocrinology. October 1, 1987; 46 (4): 289-96.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


Characteristics of receptors for dopamine in the pars intermedia of the amphibian Xenopus laevis., Verburg-Van Kemenade BM., Neuroendocrinology. January 1, 1986; 44 (4): 446-56.


GABAergic regulation of melanocyte-stimulating hormone secretion from the pars intermedia of Xenopus laevis: immunocytochemical and physiological evidence., Verburg-van Kemenade BM., Endocrinology. January 1, 1986; 118 (1): 260-7.


Association of newly synthesized pro-opiomelanocortin with secretory granule membranes in pituitary pars intermedia cells., Loh YP., FEBS Lett. May 6, 1985; 184 (1): 40-3.

Page(s): 1 2 Next