Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (50) Expression Attributions Wiki
XB-ANAT-3525

Papers associated with neuroendocrine cell

Limit to papers also referencing gene:
Results 1 - 50 of 50 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease., Walentek P., Cells Tissues Organs. January 1, 2022; 211 (6): 736-753.


Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions., Domínguez L., J Comp Neurol. March 1, 2013; 521 (4): 725-59.                                                  


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


An isoform of the vacuolar (H(+))-ATPase accessory subunit Ac45., Jansen EJ., Cell Mol Life Sci. February 1, 2010; 67 (4): 629-40.                


A novel cyclic nucleotide-gated ion channel enriched in synaptic terminals of isotocin neurons in zebrafish brain and pituitary., Khan S., Neuroscience. January 13, 2010; 165 (1): 79-89.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Incomplete posttranslational prohormone modifications in hyperactive neuroendocrine cells., Strating JR., BMC Cell Biol. April 13, 2009; 10 35.        


Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway., Jansen EJ., Biochim Biophys Acta. December 1, 2008; 1783 (12): 2301-10.


Promoting ectopic pancreatic fates: pancreas development and future diabetes therapies., Pearl EJ., Clin Genet. October 1, 2008; 74 (4): 316-24.    


Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell., van Herp F., J Endocrinol. September 1, 2008; 198 (3): 607-16.


Formation of the full SNARE complex eliminates interactions of its individual protein components with the Kv2.1 channel., Tsuk S., Biochemistry. August 12, 2008; 47 (32): 8342-9.


Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation., Zhang H., Gen Comp Endocrinol. March 1, 2008; 156 (1): 104-12.


K+ channel facilitation of exocytosis by dynamic interaction with syntaxin., Singer-Lahat D., J Neurosci. February 14, 2007; 27 (7): 1651-8.


Transgene expression of prion protein induces crinophagy in intermediate pituitary cells., van Rosmalen JW., Dev Neurobiol. January 1, 2007; 67 (1): 81-96.              


The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element., Collin RW., Dev Biol. May 4, 2006; 1087 (1): 41-51.            


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW., FEBS J. February 1, 2006; 273 (4): 847-62.


The amyloid-beta precursor-like protein APLP2 and its relative APP are differentially regulated during neuroendocrine cell activation., Collin RW., Mol Cell Neurosci. November 1, 2005; 30 (3): 429-36.


Expression of neuroserpin is linked to neuroendocrine cell activation., de Groot DM., Endocrinology. September 1, 2005; 146 (9): 3791-9.


Biosynthesis and differential processing of two pools of amyloid-beta precursor protein in a physiologically inducible neuroendocrine cell., Collin RW., J Neurochem. August 1, 2005; 94 (4): 1015-24.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


Kv2.1 channel activation and inactivation is influenced by physical interactions of both syntaxin 1A and the syntaxin 1A/soluble N-ethylmaleimide-sensitive factor-25 (t-SNARE) complex with the C terminus of the channel., Tsuk S., Mol Pharmacol. February 1, 2005; 67 (2): 480-8.


Comparative analysis and expression of neuroserpin in Xenopus laevis., de Groot DM., Neuroendocrinology. January 1, 2005; 82 (1): 11-20.  


Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels., Zhang HY., J Neuroendocrinol. January 1, 2005; 17 (1): 1-9.


Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A., Hosaka M., J Biol Chem. January 30, 2004; 279 (5): 3627-34.


Direct interaction of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating., Michaelevski I., J Biol Chem. September 5, 2003; 278 (36): 34320-30.


Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells., Scheenen WJ., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.


Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells., Rajebhosale M., J Biol Chem. February 21, 2003; 278 (8): 6075-84.


Automated nanoflow liquid chromatography-tandem mass spectrometry for a differential display proteomic study on Xenopus laevis neuroendocrine cells., Devreese B., J Chromatogr A. November 8, 2002; 976 (1-2): 113-21.


The 25-kDa synaptosome-associated protein (SNAP-25) binds and inhibits delayed rectifier potassium channels in secretory cells., Ji J., J Biol Chem. June 7, 2002; 277 (23): 20195-204.


The fate of newly synthesized V-ATPase accessory subunit Ac45 in the secretory pathway., Schoonderwoert VT., Eur J Biochem. April 1, 2002; 269 (7): 1844-53.


Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis., Kolk SM., Endocrinology. May 1, 2001; 142 (5): 1950-7.


Prohormone transport through the secretory pathway of neuroendocrine cells., Kuiper RP., Biochem Cell Biol. January 1, 2000; 78 (3): 289-98.


A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1., Ashery U., Proc Natl Acad Sci U S A. February 2, 1999; 96 (3): 1094-9.


Biosynthesis of secretogranin II in Xenopus intermediate pituitary., Van Horssen AM., Mol Cell Endocrinol. January 25, 1999; 147 (1-2): 57-64.


Co-expression in Xenopus neurons and neuroendocrine cells of messenger RNA homologues of exocytosis proteins DOC2 and munc18-1., Berghs CA., Neuroscience. January 1, 1999; 92 (2): 763-72.


Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell., Lieste JR., J Biol Chem. October 2, 1998; 273 (40): 25686-94.


Differences in the autocatalytic cleavage of pro-PC2 and pro-PC3 can be attributed to sequences within the propeptide and Asp310 of pro-PC2., Scougall K., Biochem J. September 15, 1998; 334 ( Pt 3) 531-7.


Ultramicroanalysis of peptide profiles in biological samples using MALDI mass spectrometry., Jiménez CR., Exp Nephrol. January 1, 1998; 6 (5): 421-8.


Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway., Holthuis JC., J Biol Chem. July 26, 1996; 271 (30): 17755-60.


Expression of tyrosine-sulfated secretory proteins in Xenopus laevis oocytes. Differential export of constitutive and regulated proteins., Vannier C., Eur J Biochem. July 1, 1996; 239 (1): 111-6.


The neuroendocrine proteins secretogranin II and III are regionally conserved and coordinately expressed with proopiomelanocortin in Xenopus intermediate pituitary., Holthuis JC., J Neurochem. June 1, 1996; 66 (6): 2248-56.


A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins., Chan KW., J Gen Physiol. March 1, 1996; 107 (3): 381-97.


A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Lys-conopressin in Lymnaea stagnalis., van Kesteren RE., Neuron. October 1, 1995; 15 (4): 897-908.


The neuroendocrine chaperone 7B2 can enhance in vitro POMC cleavage by prohormone convertase PC2., Braks JA., FEBS Lett. September 4, 1995; 371 (2): 154-8.


7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity., Zhu X., J Cell Biol. June 1, 1995; 129 (6): 1641-50.


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2., Shennan KI., J Biol Chem. July 15, 1994; 269 (28): 18646-50.


Autocatalytic maturation of the prohormone convertase PC2., Matthews G., J Biol Chem. January 7, 1994; 269 (1): 588-92.


Site-directed mutagenesis and expression of PC2 in microinjected Xenopus oocytes., Shennan KI., J Biol Chem. December 15, 1991; 266 (35): 24011-7.


Application of recombinant DNA technology in epitope mapping and targeting. Development and characterization of a panel of monoclonal antibodies against the 7B2 neuroendocrine protein., van Duijnhoven HL., J Immunol Methods. September 13, 1991; 142 (2): 187-98.

Page(s): 1