Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (62) Expression Attributions Wiki

Papers associated with

Limit to papers also referencing gene:
Results 1 - 50 of 62 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

S100Z is expressed in a lateral subpopulation of olfactory receptor neurons in the main olfactory system of Xenopus laevis., Kahl M., Dev Neurobiol. April 1, 2024; 84 (2): 59-73.              

Effects of the environment on the evolution of the vertebrate urinary tract., Wiener SV., Nat Rev Urol. July 13, 2023;

A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron., Corkins ME., Kidney Int. January 1, 2023; 103 (1): 77-86.  

Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes., Heneghan JF., Physiol Rep. July 1, 2022; 10 (14): e15362.

Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. July 9, 2021; 11 (1): 14258.                              

Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. July 5, 2021; 4 (8):                   

Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome., Mann N., J Am Soc Nephrol. March 1, 2021; 32 (3): 580-596.    

Olfactory coding of intra- and interspecific pheromonal messages by the male Mythimna separata in North China., Jiang NJ., Insect Biochem Mol Biol. October 1, 2020; 125 103439.

Multi-glomerular projection of single olfactory receptor neurons is conserved among amphibians., Weiss L., J Comp Neurol. September 1, 2020; 528 (13): 2239-2253.

Renal microvasculature in the adult pipid frog, Xenopus laevis: A scanning electron microscope study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2020; 281 (7): 725-736.                                

An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera: Noctuidae)., Wu H., Insect Biochem Mol Biol. December 1, 2019; 115 103106.

GTP binding protein 10 is a member of the OBG family of proteins and is differentially expressed in the early Xenopus embryo., Jerry R., Gene Expr Patterns. June 1, 2019; 32 12-17.            

Modeling congenital kidney diseases in Xenopus laevis., Blackburn ATM., Dis Model Mech. April 9, 2019; 12 (4):       

Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels., Zheng W., Nat Commun. June 13, 2018; 9 (1): 2302.            

Assembly rules for GABAA receptor complexes in the brain., Martenson JS., Elife. August 17, 2017; 6             

One Special Glomerulus in the Olfactory Bulb of Xenopus laevis Tadpoles Integrates a Broad Range of Amino Acids and Mechanical Stimuli., Brinkmann A., J Neurosci. October 26, 2016; 36 (43): 10978-10989.

Comparative expression study of sipa family members during early Xenopus laevis development., Rothe M., Dev Genes Evol. September 1, 2016; 226 (5): 369-82.

Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. June 3, 2016; (112):   

Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome., Braun DA., Nat Genet. April 1, 2016; 48 (4): 457-65.        

Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      

Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies., Desgrange A., Cells. September 11, 2015; 4 (3): 483-99.      

Integrating temperature with odor processing in the olfactory bulb., Kludt E., J Neurosci. May 20, 2015; 35 (20): 7892-902.

Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              

Olfactory wiring logic in amphibians challenges the basic assumptions of the unbranched axon concept., Hassenklöver T., J Neurosci. October 30, 2013; 33 (44): 17247-52.

Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream., Gliem S., Cell Mol Life Sci. June 1, 2013; 70 (11): 1965-84.                

Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis., Konno N., Gen Comp Endocrinol. May 1, 2013; 185 44-56.                          

HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2., Heliot C., Development. February 1, 2013; 140 (4): 873-85.  

Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension., Lienkamp SS., Nat Genet. December 1, 2012; 44 (12): 1382-7.      

Glcci1 deficiency leads to proteinuria., Nishibori Y., J Am Soc Nephrol. November 1, 2011; 22 (11): 2037-46.

The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        

Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            

Zebrafish kidney development., Drummond IA., Methods Cell Biol. January 1, 2010; 100 233-60.

A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier., Ebarasi L., Dev Biol. October 1, 2009; 334 (1): 1-9.      

Odor coding by modules of coherent mitral/tufted cells in the vertebrate olfactory bulb., Chen TW., Proc Natl Acad Sci U S A. February 17, 2009; 106 (7): 2401-6.

Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        

The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.                

Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis., Kälin RE., Dev Biol. May 15, 2007; 305 (2): 599-614.                          

Kidney development and gene expression in the HIF2alpha knockout mouse., Steenhard BM., Dev Dyn. April 1, 2007; 236 (4): 1115-25.        

Cadherin-6 is required for zebrafish nephrogenesis during early development., Kubota F., Int J Dev Biol. January 1, 2007; 51 (2): 123-9.

FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    

Large-scale identification of genes implicated in kidney glomerulus development and function., Takemoto M., EMBO J. March 8, 2006; 25 (5): 1160-74.

The cellular basis of kidney development., Dressler GR., Annu Rev Cell Dev Biol. January 1, 2006; 22 509-29.

Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes., Kramer-Zucker AG., Dev Biol. September 15, 2005; 285 (2): 316-29.

Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus., Gerth VE., Dev Dyn. July 1, 2005; 233 (3): 1131-9.          

Expression profile of the RNA-binding protein gene hermes during chicken embryonic development., Wilmore HP., Dev Dyn. July 1, 2005; 233 (3): 1045-51.          

Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.            

Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment., Zhou X., Dev Dyn. May 1, 2005; 233 (1): 142-4.    

Individual olfactory sensory neurons project into more than one glomerulus in Xenopus laevis tadpole olfactory bulb., Nezlin LP., J Comp Neurol. January 17, 2005; 481 (3): 233-9.

Expression of EGFP/SDCT1 fusion protein, subcellular localization signal analysis, tissue distribution and electrophysiological function study., Bai X., Sci China C Life Sci. December 1, 2004; 47 (6): 530-9.

Kidney development conserved over species: essential roles of Sall1., Nishinakamura R., Semin Cell Dev Biol. August 1, 2003; 14 (4): 241-7.      

Page(s): 1 2 Next