Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (17693) Expression Attributions Wiki
XB-ANAT-504

Papers associated with tissue (and gjb2)

Limit to papers also referencing gene:
Show all tissue papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Understanding the Role of ATP Release through Connexins Hemichannels during Neurulation., Tovar LM., Int J Mol Sci. January 21, 2023; 24 (3):                     


PACmn for improved optogenetic control of intracellular cAMP., Yang S., BMC Biol. October 18, 2021; 19 (1): 227.                    


Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis., Pizzo L., PLoS Genet. April 5, 2021; 17 (4): e1009112.                    


Structural determinants underlying permeant discrimination of the Cx43 hemichannel., Nielsen BS., J Biol Chem. November 8, 2019; 294 (45): 16789-16803.              


Concatenation of Human Connexin26 (hCx26) and Human Connexin46 (hCx46) for the Analysis of Heteromeric Gap Junction Hemichannels and Heterotypic Gap Junction Channels., Schadzek P., Int J Mol Sci. September 13, 2018; 19 (9):             


Syndromic deafness mutations at Asn 14 differentially alter the open stability of Cx26 hemichannels., Sanchez HA., J Gen Physiol. July 1, 2016; 148 (1): 25-42.                      


RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance., Ramírez-Gordillo D., BMC Res Notes. November 18, 2015; 8 691.      


Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules., Tong X., J Gen Physiol. September 1, 2015; 146 (3): 245-54.            


Cell communication across gap junctions: a historical perspective and current developments., Evans WH., Biochem Soc Trans. June 1, 2015; 43 (3): 450-9.


Aberrant connexin26 hemichannels underlying keratitis-ichthyosis-deafness syndrome are potently inhibited by mefloquine., Levit NA., J Invest Dermatol. April 1, 2015; 135 (4): 1033-1042.        


Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos., Chernet BT., Front Physiol. January 19, 2015; 5 519.                


Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca(2+) signaling in HeLa cells., Figueroa VA., Front Cell Neurosci. May 27, 2014; 8 265.                  


The D50N mutation and syndromic deafness: altered Cx26 hemichannel properties caused by effects on the pore and intersubunit interactions., Sanchez HA., J Gen Physiol. July 1, 2013; 142 (1): 3-22.                      


The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity., Mhaske PV., Am J Physiol Cell Physiol. June 15, 2013; 304 (12): C1150-8.


Linoleic acid induces opening of connexin26 hemichannels through a PI3K/Akt/Ca(2+)-dependent pathway., Figueroa V., Biochim Biophys Acta. March 1, 2013; 1828 (3): 1169-79.


Pathological hemichannels associated with human Cx26 mutations causing Keratitis-Ichthyosis-Deafness syndrome., Levit NA., Biochim Biophys Acta. August 1, 2012; 1818 (8): 2014-9.


Connexin26-mediated transfer of laterality cues in Xenopus., Beyer T., Biol Open. May 15, 2012; 1 (5): 473-81.            


Mechanism of inhibition of connexin channels by the quinine derivative N-benzylquininium., Rubinos C., J Gen Physiol. January 1, 2012; 139 (1): 69-82.                    


Molecular dynamics simulations of the Cx26 hemichannel: evaluation of structural models with Brownian dynamics., Kwon T., J Gen Physiol. November 1, 2011; 138 (5): 475-93.            


Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels., Oshima A., J Mol Biol. January 21, 2011; 405 (3): 724-35.


Zebrafish cx30.3: identification and characterization of a gap junction gene highly expressed in the skin., Tao L., Dev Dyn. October 1, 2010; 239 (10): 2627-36.


Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome., Sánchez HA., J Gen Physiol. July 1, 2010; 136 (1): 47-62.                  


Connexin mutations causing skin disease and deafness increase hemichannel activity and cell death when expressed in Xenopus oocytes., Lee JR, Lee JR., J Invest Dermatol. April 1, 2009; 129 (4): 870-8.


Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness., Gerido DA., Am J Physiol Cell Physiol. July 1, 2007; 293 (1): C337-45.


Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels., González D., FASEB J. November 1, 2006; 20 (13): 2329-38.


Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis., de Boer TP., Biochem Biophys Res Commun. October 20, 2006; 349 (2): 855-62.                  


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D., Development. May 1, 2006; 133 (10): 1955-66.              


An atlas of differential gene expression during early Xenopus embryogenesis., Pollet N., Mech Dev. March 1, 2005; 122 (3): 365-439.                                                                                                                                                        


A novel connexin 26 gene mutation associated with features of the keratitis-ichthyosis-deafness syndrome and the follicular occlusion triad., Montgomery JR., J Am Acad Dermatol. September 1, 2004; 51 (3): 377-82.


Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss., Meşe G., Hum Genet. August 1, 2004; 115 (3): 191-9.


Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T., Skerrett IM., FASEB J. May 1, 2004; 18 (7): 860-2.


Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems., Altevogt BM., J Neurosci. August 1, 2002; 22 (15): 6458-70.


trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation., Rouan F., J Cell Sci. June 1, 2001; 114 (Pt 11): 2105-13.


Structure of the amino terminus of a gap junction protein., Purnick PE., Arch Biochem Biophys. September 15, 2000; 381 (2): 181-90.


Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera., Oh S., J Gen Physiol. July 1, 2000; 116 (1): 13-31.                    


Gap junctions are involved in the early generation of left-right asymmetry., Levin M., Dev Biol. November 1, 1998; 203 (1): 90-105.      


Identification of connexin43 as a functional target for Wnt signalling., van der Heyden MA., J Cell Sci. June 1, 1998; 111 ( Pt 12) 1741-9.


Heteromeric connexons in lens gap junction channels., Jiang JX., Proc Natl Acad Sci U S A. February 6, 1996; 93 (3): 1287-91.


Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31., Hoh JH., J Biol Chem. April 5, 1991; 266 (10): 6524-31.

???pagination.result.page??? 1