Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6359) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and uqcc6)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome., Ufartes R., Hum Genet. November 1, 2020; 139 (11): 1363-1379.                                        


Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition., Zhang C., BMC Biol. November 27, 2019; 17 (1): 95.                


Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex., Qu Y., Elife. November 13, 2019; 8                                   


Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes., Gaitán-Peñas H., Biophys J. October 4, 2016; 111 (7): 1429-1443.                


Identification and in vitro pharmacological characterization of a novel and selective α7 nicotinic acetylcholine receptor agonist, Br-IQ17B., Tang JS., Acta Pharmacol Sin. July 1, 2015; 36 (7): 800-12.                


ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA., Stahl K., J Recept Signal Transduct Res. January 1, 2015; 35 (5): 493-504.


Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors., Charvet CL., Invert Neurosci. June 1, 2012; 12 (1): 43-51.


Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes., Bakouh N., PLoS One. January 1, 2012; 7 (4): e34879.                


Asymmetric divergence in structure and function of HCN channel duplicates in Ciona intestinalis., Jackson HA., PLoS One. January 1, 2012; 7 (11): e47590.                


Comparative transcriptomic analysis of follicle-enclosed oocyte maturational and developmental competence acquisition in two non-mammalian vertebrates., Gohin M., BMC Genomics. January 8, 2010; 11 18.                    


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M., Dev Biol. April 15, 2006; 292 (2): 333-43.                    


Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development., Horvay K., Dev Biol. March 1, 2006; 291 (1): 1-11.                          


Atrial natriuretic peptide inhibits the actions of FSH and forskolin in meiotic maturation of pig oocytes via different signalling pathways., Zhang M., J Mol Endocrinol. April 1, 2005; 34 (2): 459-72.


Functional transplantation of chloride channels from the human syncytiotrophoblast microvillous membrane to Xenopus oocytes., Ivorra I., Pflugers Arch. September 1, 2002; 444 (6): 685-91.


Expression of the gene encoding the beta-amyloid precursor protein APP in Xenopus laevis., van den Hurk WH., Brain Res Mol Brain Res. December 16, 2001; 97 (1): 13-20.          


Functional and molecular characterization of the K-Cl cotransporter of Xenopus laevis oocytes., Mercado A., Am J Physiol Cell Physiol. August 1, 2001; 281 (2): C670-80.


PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR., Button B., J Gen Physiol. May 1, 2001; 117 (5): 457-68.                    


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Opening and closing of KCNKO potassium leak channels is tightly regulated., Zilberberg N., J Gen Physiol. November 1, 2000; 116 (5): 721-34.                


Bimodal control of a Ca(2+)-activated Cl(-) channel by different Ca(2+) signals., Kuruma A., J Gen Physiol. January 1, 2000; 115 (1): 59-80.                                


Permeability and single channel conductance of human homomeric rho1 GABAC receptors., Wotring VE., J Physiol. December 1, 1999; 521 Pt 2 327-36.


Xoom: a novel oocyte membrane protein maternally expressed and involved in the gastrulation movement of Xenopus embryos., Hasegawa K., Int J Dev Biol. September 1, 1999; 43 (6): 479-85.                    


Dynamics of calcium regulation of chloride currents in Xenopus oocytes., Kuruma A., Am J Physiol. January 1, 1999; 276 (1): C161-75.


Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor., Jiang Q., J Cell Biol. November 2, 1998; 143 (3): 645-57.              


Raf-1 kinase, a potential regulator of intracellular pH in Xenopus oocytes., Kang MG., Biol Cell. October 1, 1998; 90 (6-7): 477-85.


Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation., Furukawa T., Am J Physiol. February 1, 1998; 274 (2 Pt 1): C500-12.


Mechanism of ion permeation in skeletal muscle chloride channels., Fahlke C., J Gen Physiol. November 1, 1997; 110 (5): 551-64.                      


Cloning of Xenopus presenilin-alpha and -beta cDNAs and their differential expression in oogenesis and embryogenesis., Tsujimura A., Biochem Biophys Res Commun. February 13, 1997; 231 (2): 392-6.          


The Ca2+-inactivated Cl- channel at work: selectivity, blocker kinetics and transport visualization., Reifarth FW., J Membr Biol. January 1, 1997; 155 (1): 95-104.


Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H., J Cell Biol. March 1, 1996; 132 (5): 871-85.                      


Regulation of RCK1 currents with a cAMP analog via enhanced protein synthesis and direct channel phosphorylation., Levin G., J Biol Chem. June 16, 1995; 270 (24): 14611-8.


Osmo-dependent Cl- currents activated by cyclic AMP in follicle-enclosed Xenopus oocytes., Arellano RO., Proc Biol Sci. December 22, 1994; 258 (1353): 229-35.


Hyperpolarization-activated chloride currents in Xenopus oocytes., Kowdley GC., J Gen Physiol. February 1, 1994; 103 (2): 217-30.


Expression of taurine transporter and its regulation by diet in Xenopus laevis oocytes following injection of rat kidney cortex mRNA., Han X., Adv Exp Med Biol. January 1, 1994; 359 121-30.


Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes., Arellano RO., J Gen Physiol. November 1, 1993; 102 (5): 833-57.


Atrial natriuretic factor activates cyclic adenosine 3',5'-monophosphate phosphodiesterase in Xenopus laevis oocytes and potentiates progesterone-induced maturation via cyclic guanosine 5'-monophosphate accumulation., Sandberg K., Biol Reprod. November 1, 1993; 49 (5): 1074-82.


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Expression of Madin-Darby canine kidney cell Na(+)-and Cl(-)-dependent taurine transporter in Xenopus laevis oocytes., Uchida S., J Biol Chem. May 25, 1991; 266 (15): 9605-9.


Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor., Spindel ER., Mol Endocrinol. December 1, 1990; 4 (12): 1956-63.


beta-Adrenergic induced K+ current in Xenopus oocytes: role of cAMP, inhibition by muscarinic agents., Van Renterghem C., Proc R Soc Lond B Biol Sci. January 22, 1985; 223 (1232): 389-402.


A Ca2+-activated channel from Xenopus laevis oocyte membranes reconstituted into planar bilayers., Young GP., Proc Natl Acad Sci U S A. August 1, 1984; 81 (16): 5155-9.


Beta-adrenergic induced potassium current in Xenopus oocyte: involvement of cyclic AMP., Van Renterghem C., Biochimie. February 1, 1984; 66 (2): 135-8.

???pagination.result.page??? 1