Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (29) Expression Attributions Wiki
XB-ANAT-272

Papers associated with sperm entry point

Limit to papers also referencing gene:
Results 1 - 29 of 29 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing., De Domenico E., Dev Biol. December 15, 2015; 408 (2): 252-68.          


Spatial trigger waves: positive feedback gets you a long way., Gelens L., Mol Biol Cell. November 5, 2014; 25 (22): 3486-93.              


Symmetry breakage in the vertebrate embryo: when does it happen and how does it work?, Blum M., Dev Biol. September 1, 2014; 393 (1): 109-23.          


It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry., Vandenberg LN., Commun Integr Biol. November 1, 2013; 6 (6): e27155.          


Polarity proteins are required for left-right axis orientation and twin-twin instruction., Vandenberg LN., Genesis. March 1, 2012; 50 (3): 219-34.                    


Cortical rotation and messenger RNA localization in Xenopus axis formation., Houston DW., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (3): 371-88.        


A model for cleavage plane determination in early amphibian and fish embryos., Wühr M., Curr Biol. November 23, 2010; 20 (22): 2040-5.        


H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry., Aw S., Mech Dev. January 1, 2008; 125 (3-4): 353-72.    


Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?, Danilchik MV., Development. November 1, 2006; 133 (22): 4517-26.                        


Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development., Lane MC., Dev Biol. August 1, 2006; 296 (1): 12-28.                


A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support., Wagner J., Cell Calcium. May 1, 2004; 35 (5): 433-47.


Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts., Pérez-Mongiovi D., J Cell Biol. September 4, 2000; 150 (5): 963-74.                  


Fertilization signalling and protein-tyrosine kinases., Sato K., Comp Biochem Physiol B Biochem Mol Biol. June 1, 2000; 126 (2): 129-48.


Dorsal downregulation of GSK3beta by a non-Wnt-like mechanism is an early molecular consequence of cortical rotation in early Xenopus embryos., Dominguez I., Development. February 1, 2000; 127 (4): 861-8.            


From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus., Moon RT., Bioessays. July 1, 1998; 20 (7): 536-45.


Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage., Huang S., Dev Growth Differ. April 1, 1998; 40 (2): 189-98.          


Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs., Kikkawa M., Development. December 1, 1996; 122 (12): 3687-96.                      


Relocation of mitochondria to the prospective dorsal marginal zone during Xenopus embryogenesis., Yost HJ., Dev Biol. July 1, 1995; 170 (1): 83-90.        


Provisional bilateral symmetry in Xenopus eggs is established during maturation., Brown EE., Zygote. August 1, 1994; 2 (3): 213-20.


Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos., Denegre JM., Dev Biol. November 1, 1993; 160 (1): 157-64.          


Deep cytoplasmic rearrangements in ventralized Xenopus embryos., Brown EE, Brown EE., Dev Biol. November 1, 1993; 160 (1): 148-56.


Deep cytoplasmic rearrangements during early development in Xenopus laevis., Danilchik MV., Development. April 1, 1991; 111 (4): 845-56.


A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force., Black SD., Adv Space Res. January 1, 1989; 9 (11): 159-68.


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification., Vincent JP., Dev Biol. October 1, 1987; 123 (2): 526-39.


Axis determination in polyspermic Xenopus laevis eggs., Render JA., Dev Biol. June 1, 1986; 115 (2): 425-33.


Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface., Vincent JP., Dev Biol. February 1, 1986; 113 (2): 484-500.


Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage., Black SD., Dev Biol. April 1, 1985; 108 (2): 310-24.


Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis., Ubbels GA., Adv Space Res. January 1, 1984; 4 (12): 9-18.

Page(s): 1