Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (34) Expression Attributions Wiki

Papers associated with chondrocyte

Limit to papers also referencing gene:
Results 1 - 34 of 34 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                

The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  

Identification of novel genes including NAV2 associated with isolated tall stature., Weiss B., Front Endocrinol (Lausanne). January 1, 2023; 14 1258313.          

Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis., Otsuka-Yamaguchi R., Stem Cell Res. May 1, 2021; 53 102341.          

HIF-1α metabolically controls collagen synthesis and modification in chondrocytes., Stegen S., Nature. January 1, 2019; 565 (7740): 511-515.

WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis., Nalesso G., Ann Rheum Dis. January 1, 2017; 76 (1): 218-226.              

Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis., Tsutsumi R., Regeneration (Oxf). February 1, 2016; 3 (1): 26-38.                    

Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N., BMC Dev Biol. July 25, 2014; 14 32.                        

GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors., Leijten JC., Arthritis Res Ther. September 19, 2013; 15 (5): R126.            

Development and characterization of Xl1, a Xenopus laevis chondrocyte-like cell culture., Conceição N., Mol Cell Biochem. January 1, 2013; 373 (1-2): 41-51.

Cartilage on the move: cartilage lineage tracing during tadpole metamorphosis., Kerney RR., Dev Growth Differ. October 1, 2012; 54 (8): 739-52.                      

The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6., Suzuki T., Development. August 1, 2012; 139 (16): 2988-98.                        

WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways., Nalesso G., J Cell Biol. May 2, 2011; 193 (3): 551-64.              

E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta., Yang T., J Clin Invest. July 1, 2010; 120 (7): 2474-85.

Dual transcriptional regulation by runx2 of matrix Gla protein in Xenopus laevis., Fazenda C., Gene. January 15, 2010; 450 (1-2): 94-102.

Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs., Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.      

Skeletal advance and arrest in giant non-metamorphosing African clawed frog tadpoles (Xenopus laevis: Daudin)., Kerney R., J Anat. January 1, 2010; 216 (1): 132-43.

Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian., Miura S., Bone. November 1, 2008; 43 (5): 901-9.

Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui., Kerney R., Evol Dev. January 1, 2008; 10 (4): 439-48.

Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity., Ellies DL., J Bone Miner Res. November 1, 2006; 21 (11): 1738-49.              

Twisted gastrulation modulates bone morphogenetic protein-induced collagen II and X expression in chondrocytes in vitro and in vivo., Schmidl M., J Biol Chem. October 20, 2006; 281 (42): 31790-800.

Application of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides for analysis of hyaluronan and chondroitin sulfate in human and animal tissues and cell cultures., Karousou EG., Biomed Chromatogr. December 1, 2005; 19 (10): 761-5.

Expression profile of Xenopus banded hedgehog, a homolog of mouse Indian hedgehog, is related to the late development of endochondral ossification in Xenopus laevis., Moriishi T., Biochem Biophys Res Commun. March 25, 2005; 328 (4): 867-73.

Noggin inhibits chondrogenic but not osteogenic differentiation in mesodermal stem cell line C1 and skeletal cells., Nifuji A., Endocrinology. July 1, 2004; 145 (7): 3434-42.

Interactions between Sox9 and beta-catenin control chondrocyte differentiation., Akiyama H., Genes Dev. May 1, 2004; 18 (9): 1072-87.  

Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival., Maes C., J Clin Invest. January 1, 2004; 113 (2): 188-99.

A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage., Nakayama N., Development. January 1, 2004; 131 (1): 229-40.

Hyaluronan synthases in normal and regenerating joint cartilage., Mrosek E., Cells Tissues Organs. January 1, 2003; 173 (2): 93-104.

Functional and molecular determination of carbonic anhydrase levels in bovine and cultured human chondrocytes., Swietach P., Comp Biochem Physiol B Biochem Mol Biol. November 1, 2002; 133 (3): 427-35.

Molecular aspects of healing in stabilized and non-stabilized fractures., Le AX., J Orthop Res. January 1, 2001; 19 (1): 78-84.

Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      

Induction of hydroxyapatite resorptive activity in bone marrow cell populations resistant to bafilomycin A1 by a factor with restricted expression to bone and brain, neurochondrin., Ishiduka Y., Biochim Biophys Acta. May 6, 1999; 1450 (1): 92-8.

Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells., Chimal-Monroy J., Int J Dev Biol. February 1, 1997; 41 (1): 91-102.

Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate., Zanetti M., J Cell Biol. July 1, 1985; 101 (1): 53-9.

Page(s): 1