Results 1 - 50 of 147 results
Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles. , Hänzi S, Straka H ., J Exp Biol. January 15, 2017; 220 (Pt 2): 227-236.
Continued Studies on the Effects of Simazine on the Liver Histological Structure and Metamorphosis in the Developing Xenopus laevis. , Sai L, Qu B, Li Y, Jia Q, Bo C, Liu Y , Yu G, Xie L, Li L, Ng JC, Peng C., Bull Environ Contam Toxicol. October 1, 2016; 97 (4): 517-20.
Regulation of growth rate and developmental timing by Xenopus thyroid hormone receptor α. , Wen L, Shi YB ., Dev Growth Differ. January 1, 2016; 58 (1): 106-15.
An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. , Bestman JE , Huang LC, Lee-Osbourne J, Cheung P, Cline HT ., Dev Biol. December 15, 2015; 408 (2): 269-91.
Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. , Elliott KL, Houston DW , DeCook R, Fritzsch B ., Dev Neurobiol. December 1, 2015; 75 (12): 1339-51.
Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis. , Branoner F, Straka H ., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.
The Effects of Simazine, a Chlorotriazine Herbicide, on the Expression of Genes in Developing Male Xenopus laevis. , Sai L, Liu Y , Qu B, Yu G, Guo Q, Bo C, Xie L, Jia Q, Li Y, Li X, Ng JC, Peng C., Bull Environ Contam Toxicol. August 1, 2015; 95 (2): 157-63.
Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis. , Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KT , Fukui M, Kawaguchi M, Murakami Y., Zoological Lett. June 15, 2015; 1 28.
HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum. , Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. March 16, 2015; 10 (3): e0120118.
Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. , Elliott KL, Houston DW , Fritzsch B ., Sci Rep. February 9, 2015; 5 8338.
A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. , Square T , Jandzik D, Cattell M, Coe A, Doherty J, Medeiros DM ., Dev Biol. January 15, 2015; 397 (2): 293-304.
Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. , Rozario T, Mead PE , DeSimone DW ., Mech Dev. August 1, 2014; 133 203-17.
Sp8 regulates inner ear development. , Chung HA, Medina-Ruiz S, Harland RM ., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.
Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue. , Iwabuchi J, Koshimizu K, Nakagawa T., Gen Comp Endocrinol. December 1, 2013; 194 286-94.
Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis. , Lou QQ, Zhang YF , Zhang YF , Zhou Z, Shi YL , Ge YN, Ren DK, Xu HM, Zhao YX, Wei WJ, Qin ZF., Ecotoxicology. September 1, 2013; 22 (7): 1133-44.
A transgenic Xenopus laevis reporter model to study lymphangiogenesis. , Ny A, Vandevelde W, Hohensinner P, Beerens M, Geudens I, Diez-Juan A, Brepoels K, Plaisance S , Krieg PA , Langenberg T, Vinckier S, Luttun A, Carmeliet P , Dewerchin M ., Biol Open. July 11, 2013; 2 (9): 882-90.
Tcf21 regulates the specification and maturation of proepicardial cells. , Tandon P , Miteva YV, Kuchenbrod LM , Cristea IM, Conlon FL ., Development. June 1, 2013; 140 (11): 2409-21.
Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. , Hagenlocher C, Walentek P , M Ller C, Thumberger T , Feistel K ., Cilia. April 29, 2013; 2 (1): 12.
Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut. , Dush MK, Nascone-Yoder NM ., Development. April 1, 2013; 140 (7): 1457-66.
Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target. , Elliott KL, Houston DW , Fritzsch B ., PLoS One. January 1, 2013; 8 (2): e55541.
Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo. , Mogi K, Adachi T, Izumi S, Toyoizumi R., Fluids Barriers CNS. April 25, 2012; 9 9.
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. , Agüero TH, Fernández JP, López GA, Tríbulo C, Aybar MJ ., Dev Biol. April 15, 2012; 364 (2): 99-113.
An essential and highly conserved role for Zic3 in left- right patterning, gastrulation and convergent extension morphogenesis. , Cast AE , Gao C, Amack JD, Ware SM ., Dev Biol. April 1, 2012; 364 (1): 22-31.
Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus. , Fish MB, Nakayama T , Grainger RM ., Genesis. March 1, 2012; 50 (3): 307-15.
A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. , Morckel AR, Lusic H, Farzana L, Yoder JA, Deiters A, Nascone-Yoder NM ., Development. January 1, 2012; 139 (2): 437-42.
Histone deacetylases are required for amphibian tail and limb regeneration but not development. , Taylor AJ, Beck CW ., Mech Dev. January 1, 2012; 129 (9-12): 208-18.
Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. , Cha HJ, Byrom M, Mead PE , Ellington AD, Wallingford JB , Marcotte EM ., PLoS Biol. January 1, 2012; 10 (8): e1001379.
Thyroid disruption effects of environmental level perfluorooctane sulfonates (PFOS) in Xenopus laevis. , Cheng Y, Cui Y, Chen HM , Xie WP., Ecotoxicology. November 1, 2011; 20 (8): 2069-78.
Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes. , Mondia JP, Adams DS , Orendorff RD, Levin M , Omenetto FG., Biomed Opt Express. August 1, 2011; 2 (8): 2383-91.
Effects of 4- tert-octylphenol on Xenopus tropicalis in a long term exposure. , Porter KL, Olmstead AW, Kumsher DM, Dennis WE, Sprando RL, Holcombe GW, Korte JJ, Lindberg-Livingston A, Degitz SJ., Aquat Toxicol. June 1, 2011; 103 (3-4): 159-69.
Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. , Ohkawara B, Glinka A , Niehrs C ., Dev Cell. March 15, 2011; 20 (3): 303-14.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A , Rosa A, Arduini BL, Brivanlou AH ., Dev Biol. February 1, 2011; 350 (1): 13-23.
Peptidyl-prolyl cis-trans isomerase xFKBP1B induces ectopic secondary axis and is involved in eye formation during Xenopus embryogenesis. , Terukina G, Yoshida Y, Takahashi N., Dev Growth Differ. January 1, 2011; 53 (1): 55-68.
Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis. , Terada K, Furukawa T., Dev Biol. November 1, 2010; 347 (1): 180-94.
The ATP-sensitive K(+)-channel (K(ATP)) controls early left- right patterning in Xenopus and chick embryos. , Aw S, Koster JC, Pearson W, Nichols CG, Shi NQ, Carneiro K, Levin M ., Dev Biol. October 1, 2010; 346 (1): 39-53.
Retinal patterning by Pax6-dependent cell adhesion molecules. , Rungger-Brändle E, Ripperger JA, Steiner K, Conti A, Stieger A, Soltanieh S, Rungger D ., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.
Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles. , Opitz R, Kloas W ., Gen Comp Endocrinol. September 1, 2010; 168 (2): 199-208.
ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling. , Wei S , Xu G, Bridges LC, Williams P, White JM, DeSimone DW ., Dev Cell. August 17, 2010; 19 (2): 345-52.
A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection. , Tsui J , Schwartz N , Ruthazer ES ., Front Synaptic Neurosci. June 10, 2010; 2 13.
The BMP pathway acts to directly regulate Tbx20 in the developing heart. , Mandel EM , Kaltenbrun E, Callis TE, Zeng XX, Marques SR, Yelon D, Wang DZ, Conlon FL ., Development. June 1, 2010; 137 (11): 1919-29.
FMR1/ FXR1 and the miRNA pathway are required for eye and neural crest development. , Gessert S, Bugner V, Tecza A, Pinker M, Kühl M ., Dev Biol. May 1, 2010; 341 (1): 222-35.
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. , Saharinen P, Helotera H, Miettinen J, Norrmen C, D'Amico G, Jeltsch M, Langenberg T, Vandevelde W, Ny A, Dewerchin M , Carmeliet P , Alitalo K., Genes Dev. May 1, 2010; 24 (9): 875-80.
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate. , D'Autilia S, Broccoli V, Barsacchi G, Andreazzoli M ., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6352-7.
Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development. , Langlois VS , Duarte-Guterman P, Ing S, Pauli BD, Cooke GM, Trudeau VL ., Gen Comp Endocrinol. April 1, 2010; 166 (2): 417-27.
Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. , Chung MI , Nascone-Yoder NM , Grover SA, Drysdale TA , Wallingford JB ., Development. April 1, 2010; 137 (8): 1339-49.
Analysis of SDF-1/ CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. , Takeuchi T, Tanigawa Y, Minamide R, Ikenishi K , Komiya T ., Mech Dev. January 1, 2010; 127 (1-2): 146-58.
Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis. , Qin X, Xia X, Yang Z, Yan S , Zhao Y, Wei R, Li Y, Tian M, Zhao X, Qin Z, Xu X., J Environ Sci (China). January 1, 2010; 22 (5): 744-51.
Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord. , Elliott KL, Fritzsch B ., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.
Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements. , Reed RA, Womble MA , Dush MK, Tull RR, Bloom SK, Morckel AR, Devlin EW, Nascone-Yoder NM ., Dev Dyn. December 1, 2009; 238 (12): 3111-25.
Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/ CREB pathway. , Keren-Politansky A, Keren A, Bengal E ., Dev Biol. November 15, 2009; 335 (2): 374-84.