Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and cdx2)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A mathematical modelling portrait of Wnt signalling in early vertebrate embryogenesis., Giuraniuc CV., J Theor Biol. November 7, 2022; 551-552 111239.                      


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Evo-Devo of Urbilateria and its larval forms., De Robertis EM., Dev Biol. July 1, 2022; 487 10-20.        


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D., PLoS Biol. September 1, 2021; 19 (9): e3001377.                        


Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension., Mok GF., Nat Commun. February 19, 2021; 12 (1): 1157.              


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S., Elife. September 7, 2020; 9                           


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M., Dev Biol. June 1, 2020; 462 (1): 20-35.                


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H., Front Physiol. January 1, 2020; 11 75.                    


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O., Development. January 1, 2020;                                       


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS., Development. August 9, 2019; 146 (15):                           


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.                                            


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA., Dev Biol. February 1, 2018; 434 (1): 121-132.          


Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord., Steventon B., Dev Biol. December 1, 2017; 432 (1): 3-13.


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation., Kjolby RAS., Dev Biol. June 15, 2017; 426 (2): 165-175.                                    


Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs., Stevens ML., Development. April 1, 2017; 144 (7): 1283-1295.                            


Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules., Nakamura Y., Development. June 1, 2016; 143 (11): 1914-25.            


Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis., Tamaoki K., Cell Biosci. January 21, 2016; 6 2.            


Getting to know your neighbor: cell polarization in early embryos., Nance J., J Cell Biol. September 29, 2014; 206 (7): 823-32.          


Gene regulatory networks governing lung specification., Rankin SA, Rankin SA., J Cell Biochem. August 1, 2014; 115 (8): 1343-50.


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Molecular insights into the origin of the Hox-TALE patterning system., Hudry B., Elife. March 18, 2014; 3 e01939.                                    


A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance., Livigni A., Curr Biol. November 18, 2013; 23 (22): 2233-2244.                                    


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M., Sci Rep. January 1, 2013; 3 2278.      


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro., Spence JR., Nature. February 3, 2011; 470 (7332): 105-9.      


Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis., Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.                                


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning., Ambrosio AL., Dev Cell. August 1, 2008; 15 (2): 248-60.                            


Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan., Coolen M., PLoS One. April 18, 2007; 2 (4): e374.              


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


FGF signal transduction and the regulation of Cdx gene expression., Keenan ID., Dev Biol. November 15, 2006; 299 (2): 478-88.    


FGF8, Wnt8 and Myf5 are target genes of Tbx6 during anteroposterior specification in Xenopus embryo., Li HY., Dev Biol. February 15, 2006; 290 (2): 470-81.                    


A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter., Reece-Hoyes JS., Dev Biol. June 15, 2005; 282 (2): 509-23.              


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation., Shiotsugu J., Development. June 1, 2004; 131 (11): 2653-67.              


The role of maternal CREB in early embryogenesis of Xenopus laevis., Sundaram N., Dev Biol. September 15, 2003; 261 (2): 337-52.


Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos., Hino J., Dev Biol. August 1, 2003; 260 (1): 138-57.                            


Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation., Branford WW., Curr Biol. December 23, 2002; 12 (24): 2136-41.              


Expression of the Wnt inhibitor, sFRP5, in the gut endoderm of Xenopus., Pilcher KE., Gene Expr Patterns. December 1, 2002; 2 (3-4): 369-72.  


The competence of marginal zone cells to become Spemann's organizer is controlled by Xcad2., Levy V., Dev Biol. August 1, 2002; 248 (1): 40-51.              


Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements., Frazzetto G., Mech Dev. April 1, 2002; 113 (1): 3-14.            


Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus., Tour E., Mech Dev. March 1, 2002; 112 (1-2): 141-51.      


Cloning and expression of the Cdx family from the frog Xenopus tropicalis., Reece-Hoyes JS., Dev Dyn. January 1, 2002; 223 (1): 134-40.      


Endoderm specification and differentiation in Xenopus embryos., Horb ME., Dev Biol. August 15, 2001; 236 (2): 330-43.                

???pagination.result.page??? 1 2 ???pagination.result.next???