Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and sox7)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish., Divyanshi., Mol Reprod Dev. December 21, 2023;         


Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        


Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan., Sindelka R., Sci Rep. May 29, 2018; 8 (1): 8315.                


Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis., Afouda BA., Dev Biol. February 1, 2018; 434 (1): 108-120.                  


The Sox transcriptional factors: Functions during intestinal development in vertebrates., Fu L., Semin Cell Dev Biol. March 1, 2017; 63 58-67.        


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species., Claußen M., Mol Biol Cell. November 5, 2015; .            


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


Analyzing the function of a hox gene: an evolutionary approach., Michaut L., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


Molecular cloning and characterization of the germ cell-related nuclear orphan receptor in chickens., Lee SI., Mol Reprod Dev. March 1, 2010; 77 (3): 273-84.


A functional screen for genes involved in Xenopus pronephros development., Kyuno J., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells., Sinner D., Mol Cell Biol. November 1, 2007; 27 (22): 7802-15.                


The Sox axis, Nodal signaling, and germ layer specification., Zhang C., Differentiation. July 1, 2007; 75 (6): 536-45.          


SOX7 and SOX18 are essential for cardiogenesis in Xenopus., Zhang C., Dev Dyn. December 1, 2005; 234 (4): 878-91.                    


SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus., Zhang C., Dev Biol. February 15, 2005; 278 (2): 526-41.    


Embryonic expression of Xenopus laevis SOX7., Fawcett SR., Gene Expr Patterns. January 1, 2004; 4 (1): 29-33.          


The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation., Zhang C., Development. December 1, 2003; 130 (23): 5609-24.  


Expression of human SOX18 in normal tissues and tumors., Saitoh T., Int J Mol Med. September 1, 2002; 10 (3): 339-44.


Molecular cloning and characterization of human SOX17., Katoh M., Int J Mol Med. February 1, 2002; 9 (2): 153-7.

???pagination.result.page??? 1