Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and gabarap)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β., Ruffolo G., Sci Rep. October 26, 2022; 12 (1): 17956.            


Unexpected Effect of IL-1β on the Function of GABAA Receptors in Pediatric Focal Cortical Dysplasia., Alfano V., Brain Sci. June 19, 2022; 12 (6):


Targeting GABAC Receptors Improves Post-Stroke Motor Recovery., van Nieuwenhuijzen PS., Brain Sci. March 2, 2021; 11 (3):                 


PNU-120596, a positive allosteric modulator of mammalian α7 nicotinic acetylcholine receptor, is a negative modulator of ligand-gated chloride-selective channels of the gastropod Lymnaea stagnalis., Vulfius CA., J Neurochem. November 1, 2020; 155 (3): 274-284.


Functional characterization of the antiepileptic drug candidate, padsevonil, on GABAA receptors., Niespodziany I., Epilepsia. May 1, 2020; 61 (5): 914-923.                


Reduced neurosteroid potentiation of GABAA receptors in epilepsy and depolarized hippocampal neurons., Joshi S., Ann Clin Transl Neurol. April 1, 2020; 7 (4): 527-542.            


A novel GABAergic dysfunction in human Dravet syndrome., Ruffolo G., Epilepsia. November 1, 2018; 59 (11): 2106-2117.


Differential modulation of human GABAC-ρ1 receptor by sulfur-containing compounds structurally related to taurine., Ochoa-de la Paz LD., BMC Neurosci. August 3, 2018; 19 (1): 47.            


Direct neurotransmitter activation of voltage-gated potassium channels., Manville RW., Nat Commun. May 10, 2018; 9 (1): 1847.            


Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles., Gambrill AC., J Neurophysiol. May 1, 2018; 119 (5): 1947-1961.


Fluorescent Anesthetics., Emerson DJ., Methods Enzymol. January 1, 2018; 603 93-101.


Low Expression in Xenopus Oocytes and Unusual Functional Properties of α1β2γ2 GABAA Receptors with Non-Conventional Subunit Arrangement., Baur R., PLoS One. January 3, 2017; 12 (1): e0170572.        


Activation and modulation of recombinant glycine and GABAA receptors by 4-halogenated analogues of propofol., Germann AL., Br J Pharmacol. November 1, 2016; 173 (21): 3110-3120.


Cannabis in epilepsy: From clinical practice to basic research focusing on the possible role of cannabidivarin., Morano A., Epilepsia Open. September 19, 2016; 1 (3-4): 145-151.    


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL., Neural Dev. August 8, 2016; 11 (1): 14.          


Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light., Bertolesi GE., Pigment Cell Melanoma Res. March 1, 2016; 29 (2): 186-98.


GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis., Roseti C., Neurobiol Dis. October 1, 2015; 82 311-320.


MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity., Rosso JP., Proc Natl Acad Sci U S A. February 24, 2015; 112 (8): E891-900.


Engineering a light-regulated GABAA receptor for optical control of neural inhibition., Lin WC., ACS Chem Biol. July 18, 2014; 9 (7): 1414-9.        


Sh-I-048A, an in vitro non-selective super-agonist at the benzodiazepine site of GABAA receptors: the approximated activation of receptor subtypes may explain behavioral effects., Obradović ALj., Dev Biol. March 20, 2014; 1554 36-48.


Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy., Roseti C., Epilepsia. October 1, 2013; 54 (10): 1834-44.


Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors., Kletke O., PLoS One. January 1, 2013; 8 (4): e61733.            


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.                                          


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties., Belujon P., J Neurophysiol. October 1, 2009; 102 (4): 2312-25.


Mechanisms of potentiation of the mammalian GABAA receptor by the marine cembranoid eupalmerin acetate., Li P., Br J Pharmacol. February 1, 2008; 153 (3): 598-608.


Electrophysiological properties and subunit composition of GABAA receptors in patients with gelastic seizures and hypothalamic hamartoma., Wu J., J Neurophysiol. July 1, 2007; 98 (1): 5-15.


Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities., Hadley SH., J Physiol. June 15, 2007; 581 (Pt 3): 1001-18.


BDNF modulates GABAA receptors microtransplanted from the human epileptic brain to Xenopus oocytes., Palma E., Proc Natl Acad Sci U S A. February 1, 2005; 102 (5): 1667-72.


Flumazenil-independent positive modulation of gamma-aminobutyric acid action by 6-methylflavone at human recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors., Hall BJ., Eur J Pharmacol. April 26, 2004; 491 (1): 1-8.


Neuronal representation of odourants in the olfactory bulb of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2003; 17 (1): 113-8.                    


Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits., Qian H., Proc Biol Sci. December 7, 1999; 266 (1436): 2419-25.


The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor., Bamber BA., J Neurosci. July 1, 1999; 19 (13): 5348-59.


In vivo and in vitro toxicodynamic analyses of new quinolone-and nonsteroidal anti-inflammatory drug-induced effects on the central nervous system., Kita H., Antimicrob Agents Chemother. May 1, 1999; 43 (5): 1091-7.


Functional characterization and visualization of a GABAA receptor-GFP chimera expressed in Xenopus oocytes., Bueno OF., Brain Res Mol Brain Res. August 31, 1998; 59 (2): 165-77.


Characterization and comparative pharmacological studies of a functional gamma-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae:Lepidoptera)., Wolff MA., Invert Neurosci. March 1, 1998; 3 (4): 305-15.


Synaptic transmission in the pineal eye of young Xenopus laevis tadpoles: a role for NMDA and non-NMDA glutamate and non-glutaminergic receptors?, Jamieson D., J Comp Physiol A. August 1, 1997; 181 (2): 177-86.


Allosteric modulation by single enantiomers of a C3-chiral 1,4-benzodiazepine of the gamma aminobutyric acid type A receptor channel expressed in Xenopus oocytes., Demuro A., Chirality. January 1, 1997; 9 (3): 286-90.


Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-12.


Neuroendocrine γ-Aminobutyric Acid (GABA): Functional Differences in GABAA Versus GABAB Receptor Inhibition of the Melanotrope Cell of Xenopus laevis1., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-212.


Expression of native GABAA receptors in Xenopus oocytes injected with rat brain synaptosomes., Sanna E., J Neurochem. November 1, 1996; 67 (5): 2212-4.


GABAC receptors in the vertebrate retina., Lukasiewicz PD., Mol Neurobiol. June 1, 1996; 12 (3): 181-94.


Homomeric beta 1 gamma-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties., Krishek BJ., Mol Pharmacol. March 1, 1996; 49 (3): 494-504.


Platelet-derived growth factor receptor is a novel modulator of type A gamma-aminobutyric acid-gated ion channels., Valenzuela CF., Mol Pharmacol. December 1, 1995; 48 (6): 1099-107.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis., De Koning HP., Endocrinology. February 1, 1993; 132 (2): 674-81.


Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis., Leenders HJ., Life Sci. January 1, 1993; 52 (24): 1969-75.


The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs., Peter AB., J Cell Biol. August 1, 1991; 114 (3): 455-64.

???pagination.result.page??? 1 2 ???pagination.result.next???