Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and sp6)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling., Hasebe T., Sci Rep. November 26, 2020; 10 (1): 20715.                


FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species., Beck J., Cell Tissue Res. July 1, 2020; 381 (1): 13-24.                            


Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis., Nakayama T., Genesis. December 1, 2013; 51 (12): 835-43.            


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


Recombineered Xenopus tropicalis BAC expresses a GFP reporter under the control of Arx transcriptional regulatory elements in transgenic Xenopus laevis embryos., Kelly LE., Genesis. April 1, 2005; 41 (4): 185-91.  


Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA., Baggs JE., Curr Biol. February 4, 2003; 13 (3): 189-98.          


Activation of Met tyrosine kinase by hepatocyte growth factor is essential for internal organogenesis in Xenopus embryo., Aoki S., Biochem Biophys Res Commun. May 8, 1997; 234 (1): 8-14.        


Androgen receptor mRNA expression in Xenopus laevis CNS: sexual dimorphism and regulation in laryngeal motor nucleus., Pérez J., J Neurobiol. August 1, 1996; 30 (4): 556-68.                


Developmental and differential regulations in gene expression of Xenopus pleiotrophic factors-alpha and -beta., Tsujimura A., Biochem Biophys Res Commun. September 14, 1995; 214 (2): 432-9.              


Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos., Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.                


Proopiomelanocortin gene expression as a neural marker during the embryonic development of Xenopus laevis., Heideveld M., Differentiation. March 1, 1993; 52 (3): 195-200.        


Primary structure of a novel 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS)-binding membrane protein highly expressed in Torpedo californica electroplax., Jentsch TJ., Biochem J. July 1, 1989; 261 (1): 155-66.


Expression of a histone H1-like protein is restricted to early Xenopus development., Smith RC., Genes Dev. October 1, 1988; 2 (10): 1284-95.              


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Evidence for a secretory form of the cellular prion protein., Hay B., Biochemistry. December 15, 1987; 26 (25): 8110-5.


Synthetic oligonucleotide tails inhibit in vitro and in vivo translation of SP6 transcripts of maize zein cDNA clones., Galili G., Nucleic Acids Res. February 11, 1986; 14 (3): 1511-24.


Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula., Gurdon JB., Cell. July 1, 1985; 41 (3): 913-22.                      

???pagination.result.page??? 1