Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and ache)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin., Jenkins JA., Int J Mol Sci. December 10, 2021; 22 (24):                     


Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR., Epstein M., Toxicol Lett. April 1, 2021; 340 114-122.


Linking organochlorine exposure to biomarker response patterns in Anurans: a case study of Müller's clawed frog (Xenopus muelleri) from a tropical malaria vector control region., Wolmarans NJ., Ecotoxicology. November 1, 2018; 27 (9): 1203-1216.


Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis., Pickett MA., Development. August 1, 2017; 144 (15): 2764-2770.                    


Thrombopoietin induces production of nucleated thrombocytes from liver cells in Xenopus laevis., Tanizaki Y., Sci Rep. December 21, 2015; 5 18519.                                


Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis., Watson FL., Environ Toxicol Chem. June 1, 2014; 33 (6): 1337-45.


Evaluation of in vitro and in vivo toxic effects of newly synthesized benzimidazole-based organophosphorus compounds., Güngördü A., Ecotoxicol Environ Saf. January 1, 2013; 87 23-32.


Axial-skeletal defects caused by Carbaryl in Xenopus laevis embryos., Bacchetta R., Sci Total Environ. March 15, 2008; 392 (1): 110-8.


Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae., Colombo A., Chemosphere. December 1, 2005; 61 (11): 1665-71.


Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development., Bonfanti P., Aquat Toxicol. December 10, 2004; 70 (3): 189-200.


Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency., Ishigaki K., Neuromuscul Disord. March 1, 2003; 13 (3): 236-44.


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL., Neuron. January 17, 2002; 33 (2): 275-85.


Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., Milán FJ., J Comp Neurol. March 27, 2000; 419 (1): 96-121.                  


Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development., Woldeyesus MT., Genes Dev. October 1, 1999; 13 (19): 2538-48.


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ., Neuroscience. January 1, 1999; 91 (2): 753-69.


In vivo and in vitro resistance to multiple anticholinesterases in Xenopus laevis tadpoles., Shapira M., Toxicol Lett. December 28, 1998; 102-103 205-9.


Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody., Astrow SH., J Neurocytol. September 1, 1998; 27 (9): 667-81.


Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants., Sternfeld M., J Physiol Paris. January 1, 1998; 92 (3-4): 249-55.


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons., Seidman S., Mol Cell Biol. June 1, 1995; 15 (6): 2993-3002.


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development., Pierce KE., J Exp Zool. April 15, 1992; 262 (1): 40-50.


Expression and tissue-specific assembly of human butyrylcholine esterase in microinjected Xenopus laevis oocytes., Soreq H., J Biol Chem. June 25, 1989; 264 (18): 10608-13.


Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells., Peng HB., Dev Biol. June 1, 1988; 127 (2): 452-5.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.


Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target., Heathcote RD., J Neurosci. August 1, 1987; 7 (8): 2493-501.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve., Peng HB., J Neurosci. February 1, 1986; 6 (2): 581-9.


Formation of the vertebrate neuromuscular junction., Moody-Corbett F., Dev Biol (N Y 1985). January 1, 1986; 2 605-35.


Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures., Rubin LL., J Neurochem. December 1, 1985; 45 (6): 1932-40.


Molecular forms of acetylcholinesterase in Xenopus muscle., Lappin RI., Dev Biol. August 1, 1985; 110 (2): 269-74.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction., Anderson MJ., J Cell Biol. November 1, 1984; 99 (5): 1769-84.


Lineage segregation and developmental autonomy in expression of functional muscle acetylcholinesterase mRNA in the ascidian embryo., Meedel TH., Dev Biol. October 1, 1984; 105 (2): 479-87.


Structural requirements and species specificity of the inhibition by beta-endorphin of heavy acetylcholinesterase from vertebrate skeletal muscle., Haynes LW., Mol Pharmacol. July 1, 1984; 26 (1): 45-50.


Two types of miniature endplate potentials in Xenopus nerve-muscle cultures., Kidokoro Y., Neurosci Res. June 1, 1984; 1 (3): 157-70.


Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters., Peng HB., J Cell Biol. February 1, 1984; 98 (2): 550-7.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.


Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole., Young SH., J Neurosci. January 1, 1983; 3 (1): 225-31.

???pagination.result.page??? 1