Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and dpt)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs., Aztekin C., Development. June 1, 2021; 148 (11):                                             


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.                    


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G., Neural Dev. February 2, 2021; 16 (1): 2.                              


Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems., Adil MT., Genesis. February 1, 2021; 59 (1-2): e23411.                


Spinal Cord Cells from Pre-metamorphic Stages Differentiate into Neurons and Promote Axon Growth and Regeneration after Transplantation into the Injured Spinal Cord of Non-regenerative Xenopus laevis Froglets., Méndez-Olivos EE., Front Cell Neurosci. July 21, 2017; 11 398.                        


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. February 1, 2017; 12 (2): 372-389.      


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells., Muñoz R., Dev Biol. December 15, 2015; 408 (2): 229-43.                              


Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages., Lee-Liu D., Neural Dev. May 22, 2014; 9 12.              


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M., Neural Dev. April 26, 2012; 7 13.            

???pagination.result.page??? 1