Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and dcx)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G., Neural Dev. February 2, 2021; 16 (1): 2.                              


Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors., Kakebeen AD., Elife. April 27, 2020; 9                             


Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis., Edwards-Faret G., J Comp Neurol. July 1, 2018; 526 (10): 1712-1732.


interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration., Tsujioka H., Nat Commun. September 8, 2017; 8 (1): 495.                                


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. March 27, 2017; 11 24.                        


Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex., Martinez-Garay I., Development. June 15, 2016; 143 (12): 2121-34.                


Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells., Muñoz R., Dev Biol. December 15, 2015; 408 (2): 229-43.                              


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L., Neuroscience. April 2, 2015; 290 61-79.  


Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments., Moreno N., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.                  


Role of 14-3-3 proteins in eukaryotic signaling and development., Darling DL., Curr Top Dev Biol. January 1, 2005; 68 281-315.

???pagination.result.page??? 1