Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and crh)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

cyp21a2 Knockout Tadpoles Survive Metamorphosis Despite Low Corticosterone., Paul B., Endocrinology. November 14, 2022; 164 (1):               


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


An intrinsic CRF signaling system within the optic tectum., Carr JA., Gen Comp Endocrinol. July 1, 2013; 188 204-11.  


Metamorphosis in a frog that does not have a tadpole., Elinson RP., Curr Top Dev Biol. January 1, 2013; 103 259-76.


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


The origins and evolution of vertebrate metamorphosis., Laudet V., Curr Biol. September 27, 2011; 21 (18): R726-37.            


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element., Yao M., Endocrinology. May 1, 2007; 148 (5): 2518-31.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival., Boorse GC., Endocrinology. March 1, 2006; 147 (3): 1498-507.


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC., Endocrinology. November 1, 2005; 146 (11): 4851-60.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor., de Groef B., Gen Comp Endocrinol. August 1, 2004; 138 (1): 89-95.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Biochemical characterization and expression analysis of the Xenopus laevis corticotropin-releasing hormone binding protein., Valverde RA., Mol Cell Endocrinol. February 28, 2001; 173 (1-2): 29-40.


Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis., Arai M., Endocrinology. January 1, 2001; 142 (1): 446-54.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Identification of two corticotropin-releasing factor receptors from Xenopus laevis with high ligand selectivity: unusual pharmacology of the type 1 receptor., Dautzenberg FM., J Neurochem. October 1, 1997; 69 (4): 1640-9.


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis)., Pieribone VA., J Comp Neurol. March 22, 1994; 341 (4): 492-506.


Xenopsin, neurotensin, neurotensin(8-13) and N-acetyl-neurotensin(8-13) inhibit vascular leakage in rats after tissue injury., Gao GC., J Pharmacol Exp Ther. May 1, 1993; 265 (2): 619-25.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians., Stenzel-Poore MP., Mol Endocrinol. October 1, 1992; 6 (10): 1716-24.


The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis., Jenks BG., Life Sci. January 1, 1991; 48 (17): 1633-7.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM., Peptides. January 1, 1987; 8 (6): 1093-100.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the vertebrate endocrine pancreas., Petrusz P., Proc Natl Acad Sci U S A. March 1, 1983; 80 (6): 1721-5.

???pagination.result.page??? 1