Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (136) Expression Attributions Wiki
XB-ANAT-640

Papers associated with T cell (and myh6)

Limit to papers also referencing gene:
Show all T cell papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates., Ohta Y., Immunol Rev. September 1, 2015; 267 (1): 6-15.


Evolution of nonclassical MHC-dependent invariant T cells., Edholm ES., Cell Mol Life Sci. December 1, 2014; 71 (24): 4763-80.


A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles., Robert J., Immunogenetics. October 1, 2014; 66 (9-10): 513-23.


Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae., Edholm ES., Immunogenetics. June 1, 2014; 66 (6): 411-26.


Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians., Edholm ES., Proc Natl Acad Sci U S A. August 27, 2013; 110 (35): 14342-7.          


Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis., Nedelkovska H., Biol Open. March 15, 2013; 2 (3): 335-42.                


Phylogenetic and developmental study of CD4, CD8 α and β T cell co-receptor homologs in two amphibian species, Xenopus tropicalis and Xenopus laevis., Chida AS., Dev Comp Immunol. March 1, 2011; 35 (3): 366-77.


Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species., Goyos A., J Immunol. January 1, 2011; 186 (1): 372-81.


Comparative in vivo study of gp96 adjuvanticity in the frog Xenopus laevis., Nedelkovska H., J Vis Exp. September 3, 2010; (43):


Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance., Robert J., Immunol Res. December 1, 2009; 45 (2-3): 114-22.


Novel nonclassical MHC class Ib genes associated with CD8 T cell development and thymic tumors., Goyos A., Mol Immunol. May 1, 2009; 46 (8-9): 1775-86.


Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation., Robert J., J Immunol. March 1, 2008; 180 (5): 3176-82.


Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses., Goyos A., Eur J Immunol. June 1, 2007; 37 (6): 1494-501.


In vivo study of T-cell responses to skin alloantigens in Xenopus using a novel whole-mount immunohistology method., Ramanayake T., Transplantation. January 27, 2007; 83 (2): 159-66.


Adaptive immunity and histopathology in frog virus 3-infected Xenopus., Robert J., Virology. February 20, 2005; 332 (2): 667-75.


Ontogeny of Xenopus NK cells in the absence of MHC class I antigens., Horton TL., Dev Comp Immunol. September 1, 2003; 27 (8): 715-26.


Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis., Izutsu Y., Dev Growth Differ. December 1, 2002; 44 (6): 477-88.            


Identification and characterization of Xenopus CD8+ T cells expressing an NK cell-associated molecule., Rau L., Eur J Immunol. June 1, 2002; 32 (6): 1574-83.


Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins., Robert J., J Immunol. February 15, 2002; 168 (4): 1697-703.


Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells., Izutsu Y., Dev Biol. May 15, 2000; 221 (2): 365-74.          


In vitro differentiation of a CD4/CD8 double-positive equivalent thymocyte subset in adult Xenopus., Robert J., Int Immunol. April 1, 1999; 11 (4): 499-508.


T-cell and natural killer cell development in thymectomized Xenopus., Horton JD., Immunol Rev. December 1, 1998; 166 245-58.


Natural cytotoxicity towards allogeneic tumour targets in Xenopus mediated by diverse splenocyte populations., Horton TL., Dev Comp Immunol. January 1, 1998; 22 (2): 217-30.


The immune system of ectothermic vertebrates., Flajnik MF., Vet Immunol Immunopathol. November 1, 1996; 54 (1-4): 145-50.


NK-like activity against allogeneic tumour cells demonstrated in the spleen of control and thymectomized Xenopus., Horton TL., Immunol Cell Biol. August 1, 1996; 74 (4): 365-73.


Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis., Robert J., Differentiation. October 1, 1995; 59 (3): 135-44.


Ontogeny and thymus-dependence of T cell surface antigens in Xenopus: flow cytometric studies on monoclonal antibody-stained thymus and spleen., Gravenor I., Dev Comp Immunol. January 1, 1995; 19 (6): 507-23.


Immune responses of thymus/lymphocyte embryonic chimeras: studies on tolerance and major histocompatibility complex restriction in Xenopus., Flajnik MF., Eur J Immunol. June 1, 1985; 15 (6): 540-7.


Induction of T cell differentiation in early-thymectomized Xenopus by grafting adult thymuses from either MHC-matched or from partially or totally MHC-mismatched donors., Nagata S., Thymus. January 1, 1984; 6 (1-2): 89-103.

???pagination.result.page??? 1